Inorganic Nanoparticles with Fullerene-like Structure and Inorganic Nanotubes

  • R. Tenne
  • R. Popovitz-Biro
Chapter

Abstract

Graphitic nanoparticles that are not allowed to grow to a macroscopic size spontaneously form polyhedral structures—fullerenes [1] and nanotubes [2]. Thus, fullerenes and nanotubes are the thermodynamically favorable form of carbon if the number of atoms in the particle is not allowed to grow indefinitely (beyond, say, 0.1 micron). The driving force for the formation of such closed-cage nanostructures stems from the abundance of peripheral atoms in the graphitic lattice, which are only twofold bonded. In order to annihilate these edge atoms, pentagons are produced and inserted into the otherwise honeycomb lattice, which leads to the folding of the planar nanostructure. When 12 such pentagons occur in the nanoparticle, a closed cage nanostructure is obtained. The bending of the graphitic sheet imposes elastic strain into the nanoparticle. High temperatures or other sources of energetic excitation are needed in order to overcome the strain energy, which is more than compensated by the annihilation of the dangling bonds, once the nanoparticle is fully closed and is therefore seamless. It was hypothesized that this virtue is not limited to graphite but is common to highly anisotropic layered materials, like MoS2. Therefore, the formation of closed polyhedra and nanotubes is believed to be a generic property of materials with anisotropic (2D) layered structures [3, 4, 5]. In analogy to carbon fullerenes, other related structures, like multilayer polyhedra (onions) and nanotubes, could be anticipated. These new structures received the generic name inorganic fullerene-like structures (IF)

Keywords

Electron Diffraction Pattern Layered Compound Tube Axis Helical Angle Chemical Vapor Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brein, R. F. Curl, and R. E. Smalley, Nature 318 (1985) 162.CrossRefGoogle Scholar
  2. 2.
    S. Lijima, Nature 354 (1991) 56.CrossRefGoogle Scholar
  3. 3.
    R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature 360 (1992) 444.CrossRefGoogle Scholar
  4. 4.
    L. Margulis, G. Salitra, R. Tenne, and M. Talianker, Nature 365 (1993) 113.CrossRefGoogle Scholar
  5. 5.
    Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, Science 267 (1995) 222.CrossRefGoogle Scholar
  6. 6.
    B. C. Satishkumar, A. Govindaraj, E. M. Vogel, L. Basumallick, and C. N. R. Rao, J. Mater. Res. 12 (1997) 604.CrossRefGoogle Scholar
  7. 7.
    G. H. Du, Q. Chen, R. C. Che, Z. Y Yuan, and L.-M. Peng, Appl. Phys. Lett. 79 (2001) 3702.CrossRefGoogle Scholar
  8. 8.
    M. E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, and H. U. Nissen, Angew. Chem. Int. Ed. 37 (1998) 1263.CrossRefGoogle Scholar
  9. 9.
    F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schneyder, and R. Nesper, J. Am. Chem. Soc. 121 (1999) 8324.CrossRefGoogle Scholar
  10. 10.
    A. Rothschild, G. L. Frey, M. Homyonfer, M. Rappaport, and R. Tenne, Mater. Res. Innov. 3 (1999) 145.CrossRefGoogle Scholar
  11. 11.
    A. Rothschild, J. Sloan, and R. Tenne, J. Am. Chem. Soc. 122 (2000) 5169.CrossRefGoogle Scholar
  12. 12.
    R. Rosentsveig, A. Margolin, Y. Feldman, R. Popovitz-Biro, and R. Tenne, Chem. Mater. 14(2002)471.CrossRefGoogle Scholar
  13. 13.
    Y. Feldman, A. Zak, R. Popovitz-Biro, and R. Tenne, Solid State Sci. 2 (2000) 663.CrossRefGoogle Scholar
  14. 14.
    M. Remskar, Z. Skraba, M. Regula, C. Ballif, R. Sanjines, and F. Lévy, Adv. Mater. 10 (1998) 246.CrossRefGoogle Scholar
  15. 15.
    Y. Q. Zhu, W. K. Hsu, N. Grobert, B. H. Chang, M. Terrones, H. Terrones, H. W. Kroto, and D. R. M. Walton, Chem. Mater. 12 (2000) 1190.CrossRefGoogle Scholar
  16. 16.
    Y. Q. Zhu, W. K. Hsu, H. Terrones, N. Grobert, B. H. Chang, M. Terrones, B. Q. Wei, H. W. Kroto, D. R. M. Walton, C. B. Boothroyd, I. Kinloch, G. Z. Chen, A. H. Windle, and D. J. Fray, J. Mater. Chem. 10 (2000) 2570.CrossRefGoogle Scholar
  17. 17.
    W. K. Hsu, B. H. Chang, Y. Q. Zhu, W. Q. Han, H. Terrones, M. Terrones, N. Grobert, A. K. Cheetham, H. W Kroto, and D. R. M. Walton, J. Am. Chem. Soc. 122 (2000) 10155.CrossRefGoogle Scholar
  18. 18.
    J. Cumings and A. Zettl, Chem. Phys. Lett. 316 (2000) 211 and Chem. Phys. Lett. 318 (2000) 497.CrossRefGoogle Scholar
  19. 19.
    A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, and R. Tenne, J. Am. Chem. Soc. 122 (2000) 11108.CrossRefGoogle Scholar
  20. 20.
    P. W Fowler and D. E. Manolopoulos, An Atlas of Fullerenes (Cambridge: Oxford University Press, 1995).Google Scholar
  21. 21.
    M. Cote, M. L. Cohen, and D. J. Chadi, Phys. Rev. B 58 (1998) R4277.CrossRefGoogle Scholar
  22. 22.
    G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, Phys. Rev. Lett. 85 (2000) 146.CrossRefGoogle Scholar
  23. 23.
    M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292 (2001) 479.CrossRefGoogle Scholar
  24. 24.
    M. Chhowalla and G. A. J. Amaratunga, Nature 407 (2000) 164.CrossRefGoogle Scholar
  25. 25.
    P. A. Parilla, A. C. Dillon, K. M. Jones, G. Riker, D. L. Schulz, D. S. Ginley, and M. J. Heben, Nature 397 (1999) 114.CrossRefGoogle Scholar
  26. 26.
    B. C. Guo, K. P. Kerns, and A. W Castleman Jr., Science 255 (1992) 1411.CrossRefGoogle Scholar
  27. 27.
    L. Pauling, Proc. Nat. Acad. Sci. 16 (1930) 578.CrossRefGoogle Scholar
  28. 28.
    K. Kato, I. Kawada, and T. Takahashi, Acta Cryst. B 33 (1977) 3437.CrossRefGoogle Scholar
  29. 29.
    L. Guemas, P. Rabu, A. Meerschut, and J. Rouxel, Mater. Res. Bull. 23 (1988) 1061.CrossRefGoogle Scholar
  30. 30.
    G. A. Wiegers and A. Meerschut, J. Alloys Comp. 178 (1992) 351.CrossRefGoogle Scholar
  31. 31.
    K. Suzuki, T. Enoki, and K. Imaeda, Solid State Comm. 78 (1991) 73.CrossRefGoogle Scholar
  32. 32.
    F. Krumeich, H.-J. Muhr, M. Niederberger, F Bieri, B. Schnyder, and R. Nesper, J. Am. Chem. Soc. 121 (1999) 8324.CrossRefGoogle Scholar
  33. 33.
    A. Dobley, K. Ngala, S. Yang, P. Y Zavalij, and M. S. Whttingham, Chem. Mater. 13 (2001) 4382.CrossRefGoogle Scholar
  34. 34.
    S. Avivi, Y Mastai, G. Hodes, and A. Gedanken, J. Am. Chem. Soc. 121 (1999) 4196.CrossRefGoogle Scholar
  35. 35.
    J. S. Kasper, P. Hagenmuller, M. Pouchard, and C. Cros, Science 150 (1965) 1713.CrossRefGoogle Scholar
  36. 36.
    C. Cros, M. Pouchard, and E. P. Hagenmuller, J. Solid State Chem. 2 (1970) 570.CrossRefGoogle Scholar
  37. 37.
    S. Saito and A. Oshiyama, Phys. Rev. B 51 (1995) 2628.CrossRefGoogle Scholar
  38. 38.
    E. Kaxiras and K. Jackson, Phys. Rev. Lett. 71 (1993) 727.CrossRefGoogle Scholar
  39. 39.
    L. Zeger and E. Kaxiras, Phys. Rev. Lett. 70 (1993) 2920.CrossRefGoogle Scholar
  40. 40.
    D. Wichmann and K. Jug, J. Phys. Chem. B 103 (1999) 10087.CrossRefGoogle Scholar
  41. 41.
    N. N. Grennwood and A. Earnshaw, Chemistry of the Elements (Oxford: Pergamon Press, 1984).Google Scholar
  42. 42.
    R. Tenne, Adv. Mater. 1 (1995) 7, 965.CrossRefGoogle Scholar
  43. 43.
    S. C. Sevob and J. D. Corbett, Science 262 (1993) 880.CrossRefGoogle Scholar
  44. 44.
    S. Bobev and S. C. Sevov, J. Am. Chem. Soc. 123 (2001) 3389.CrossRefGoogle Scholar
  45. 45.
    A. Gindulyte, W. N. Lipscomb, and L. Massa, Inorg. Chem. 37 (1998) 6544.CrossRefGoogle Scholar
  46. 46.
    I. Boustani, A. Quandt, E. Hernandez, and A. Rubio, J. Chem. Phys. 110 (1999) 3176.CrossRefGoogle Scholar
  47. 47.
    W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26 (1968) 62.CrossRefGoogle Scholar
  48. 48.
    Micelles, Membranes, Micro emulsions and Monolayers, W. M. Gelbart, A. Ben-Shaul, and D. Roux (Eds.) (New York: Springer, 1994).Google Scholar
  49. 49.
    W. Shenton, T. Douglas, M. Young, G. Stubbs, and S. Mann, Adv. Mater. 11 (1999) 253.CrossRefGoogle Scholar
  50. 50.
    M. Harada and M. Adachi, Adv. Mater. 12 (2000) 839.CrossRefGoogle Scholar
  51. 51.
    D. J. Srolovitz, S. A. Safran, M. Homyonfer, and R. Tenne, Phys. Rev. Lett. 14 (1995) 1779.CrossRefGoogle Scholar
  52. 52.
    S. M. Liu, L. M. Gan, L. H. Liu, W. D. Zhang, and H. C. Zeng, Chem. Mater. 14 (2002) 1391.CrossRefGoogle Scholar
  53. 53.
    M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, and N. Khazanovich, Nature 366 (1993) 324.CrossRefGoogle Scholar
  54. 54.
    L. Margulis, R. Tenne, and S. Iijima, Microsc. Microanal. Microstruct. 7 (1996) 87.CrossRefGoogle Scholar
  55. 55.
    M. Nath, A. Govindaraj, and C. N. R. Rao, Adv. Mater. 13 (2001) 283.CrossRefGoogle Scholar
  56. 56.
    M. Nath and C. N. R. Rao, J. Am. Chem. Soc. 123 (2001) 4841.CrossRefGoogle Scholar
  57. 57.
    M. Nath and C. N. R. Rao, Chem. Comm. (2001) 2236.Google Scholar
  58. 58.
    Binary alloy phase diagrams, 2nd ed., Vol. 3, T. B. Massalski (Ed.) (Materials Park, OH: ASM Intl., Materials Information Society, 1992).Google Scholar
  59. 59.
    M. Remskar, Z. Skraba, F. Cleton, R. Sanjines, and F. Lévy, Appl. Phys. Lett. 69 (1996) 351.CrossRefGoogle Scholar
  60. 60.
    G. Seifert, T. Köhller, and R. Tenne, J. Phys. Chem. B 106 (2002) 2497.CrossRefGoogle Scholar
  61. 61.
    R. Rosentsveig, A. Margolin, Y. Feldman, R. Popovitz-Biro, and R. Tenne, Chem. Mater. 14(2002)471.CrossRefGoogle Scholar
  62. 62.
    Y. Feldman, G. L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J. L. Hutchison, and R. Tenne, J. Am. Chem. Soc. 118 (1996) 5362.CrossRefGoogle Scholar
  63. 63.
    A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, and R. Tenne, J. Am. Chem. Soc. 122(2000) 11108.CrossRefGoogle Scholar
  64. 64.
    Y. Rosenfeld Hacohen, E. Grunbaum, R. Tenne, J. Sloan, and J. L. Hutchison, Nature 395 (1998) 336.CrossRefGoogle Scholar
  65. 65.
    Y. Rosenfeld Hacohen, R. Popovitz-Biro, E. Grunbaum, Yehiam Prior, and R. Tenne, Adv. Mater. 14 (2002) 1075.CrossRefGoogle Scholar
  66. 66.
    R. Popovitz-Biro, A. Twersky, Y Rosenfeld Hachoen, and R. Tenne, Isr. J. Chem. 41 (2001) 7.CrossRefGoogle Scholar
  67. 67.
    M. Remskar, Z. Skraba, R. Sanjines, and F. Lévy, Surf. Rev. Lett. 6 (1999) 1283.CrossRefGoogle Scholar
  68. 68.
    M. Remskar, Z. Skraba, P. Stadelmann, and F. Levy, Adv. Mater. 12 (2000) 814.CrossRefGoogle Scholar
  69. 69.
    M. Homyonfer, B. Alperson, Y Rosenberg, L. Sapir, S. R. Cohen, G. Hodes, and R. Tenne, J. Am. Chem. Soc. 119 (1997) 2693.CrossRefGoogle Scholar
  70. 70.
    J. A. Hollingsworth, D. M. Poojary, A. Clearfield, and W. E. Buhro, J. Am. Chem. Soc. 122 (2000) 3562.CrossRefGoogle Scholar
  71. 71.
    S. Avivi, Y. Mastai, and A. Gedanken, J. Am. Chem. Soc. 122 (2000) 4331.CrossRefGoogle Scholar
  72. 72.
    S. M. Lee, Y. H. Lee, Y. G. Hwang, J. Eisner, D. Porezag, and T. Frauenheim, Phys. Rev. B 60 (1999) 7788.CrossRefGoogle Scholar
  73. 73.
    J. A. Wilson and A. D. Yoffe, Adv. Phys. 18 (1969) 193.CrossRefGoogle Scholar
  74. 74.
    J. Moser, F. Lévy, and F. Bussy, J. Vac. Sci. Technol. A 12 (1994) 494.CrossRefGoogle Scholar
  75. 75.
    L. Margulis, P. Dluzewski, Y Feldman, and R. Tenne, J. Microscopy 181 (1996) 68.CrossRefGoogle Scholar
  76. 76.
    M. Remskar, Z. Skraba, R. Sanjinés, and F. Lévy, Appl. Phys. Lett. 74 (1999) 3633.CrossRefGoogle Scholar
  77. 77.
    M. Remskar, Z. Skraba, C. Ballif, R. Sanjines, and F. Lévy, Surface Science 435 (1999) 637.CrossRefGoogle Scholar
  78. 78.
    F. Jensen and H. Toftlund, Chem. Phys. Lett. 201 (1993) 89.CrossRefGoogle Scholar
  79. 79.
    M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Ramos, J. P. Hare, R. Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Chem. Phys. Lett. 259 (1996) 568.CrossRefGoogle Scholar
  80. 80.
    D. Golberg, Y Bando, O. Stéphan, and K. Kurashima, Appl. Phys. Lett. 73 (1998) 2441.CrossRefGoogle Scholar
  81. 81.
    D. Stéphan, Y Bando, A. Loiseau, E Willaime, N. Shramchenko, T. Tamiya, and T. Sato, Appl. Phys. A 67 (1998) 107.Google Scholar
  82. 82.
    K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278 (1997) 653.CrossRefGoogle Scholar
  83. 83.
    Y. Zhang, K. Suenaga, and S. Iijima, Science 281 (1998) 973.CrossRefGoogle Scholar
  84. 84.
    M. I. Mendelev, D. J. Srolovitz, S. A. Safran, and R. Tenne, Phys. Rev. B 65 (2002) 075402.CrossRefGoogle Scholar
  85. 85.
    E. J. Whittaker, Acta. Cryst. 21 (1966) 461.CrossRefGoogle Scholar
  86. 86.
    S. Iijima and T. Ichihashi, Nature 363 (1993) 603.CrossRefGoogle Scholar
  87. 87.
    X. F. Zang, X. B. Zang, G. Van Tendeloo, S. Amelinckx, M. Op de Beeck, and J. Van Landuyt, J. Cryst. Growth, 130 (1993) 368.CrossRefGoogle Scholar
  88. 88.
    M. Liu and J. M. Cowley, Carbon 32 (1994) 393.CrossRefGoogle Scholar
  89. 89.
    M. Liu and J. M. Cowley, Ultramicroscopy 53 (1994) 333.CrossRefGoogle Scholar
  90. 90.
    A. Klug, F. H. C. Crick, and Wyckoff, Acta Crystalogr. 11 (1958) 199.CrossRefGoogle Scholar
  91. 91.
    L. C. Qin, T. Ichihashi, and S. Iijima, Ultramicroscopy 67 (1997) 181.CrossRefGoogle Scholar
  92. 92.
    A. Dobley, K. Ngala, S. Yang, P. Y Zavalij, and M. S. Whittingham, Chem. Mater. 13(2001)4382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • R. Tenne
    • 1
  • R. Popovitz-Biro
    • 1
  1. 1.Weizmann Institute of ScienceIsrael

Personalised recommendations