Radiometric Image Processing

  • Derek R. Peddle
  • Philippe M. Teillet
  • Michael A. Wulder


Based on a rich tradition of remote sensing in forest applications using aerial photography, the emergence of digital imagery from airborne and satellite platforms has created new frontiers for the remote sensing of forests. Today, a wide array of sophisticated sensors offer data at spatial, spectral, radiometric and temporal resolutions that approach or surpass aerial photography, with capabilities also available for imaging at synoptic regional, continental and planetary scales. As a result of these technical advances, together with improved forest practices and increased environmental concerns, the expectations of information derived from forest remote sensing has risen dramatically in applications ranging from baseline forest inventory and management, ecosystem health, forest fire and disease, to the broader contexts of sustainable resource development, national and international policy, and environmental and global change. Over time, the emphasis on quantitative data processing and analysis has increased such that, today, a significant proportion of users rely on accurate, high-quality data to obtain detailed surface cover, biophysical and structural information about forested areas of the Earth at particular locations and at specific times. This information may be of economic, social, strategic, political, or environmental value but, without it, the significant effort and cost to put Earth sensing capabilities in place is difficult to justify (MacDonald 1997).


Remote Sensing Aerosol Optical Depth Atmospheric Correction Radiometric Calibration Photogrammetric Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, T. R. (2000). Topographic normalization of Landsat Thematic Mapper data in three mountain environments. Geocarto International, 15, 13–19.CrossRefGoogle Scholar
  2. Anderson, G. P., Berk, A., Acharya, P. K., Matthew, M. W., Bernstein, L. S., Chetwynd, J. H., Dothe, H., Adler-Golden, S. M., Ratkowski, A. J., Felde, G. W., Gardner, J. A., Hoke, M. L., Richtsmeier, S. C, Pukall, B., Mello, J., & Jeong, L. S. (2000). MODTRAN4: Radiative transfer modeling for remote sensing, algorithms for multispectral, hyperspectral, and ultraspectral imagery VI. Shen, S. S., & Descour, M. R. (Eds.). Proceedings of SPJE, 4049, 176–183. Orlando, Florida, USA.Google Scholar
  3. Anger, C. D., Mah, S., & Babey, S. (1994). Technological enhancements to the compact airborne spectrographic imager (casi). Proceedings, First International Conference on Airborne Remote Sensing, 2, 205–213. Strasbourg, France.Google Scholar
  4. Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13, 95–120.CrossRefGoogle Scholar
  5. Bokoye, A. I., Royer, A., O’Neill, N. T., Cliche, P., Fedosejevs, G., Teillet, P. M., & McArthur, L. J. B. (2001). Characterization of atmospheric aerosols across Canada from a ground-based sunphotometer network: AEROCAN. Atmosphere-Ocean, 39,429–456.CrossRefGoogle Scholar
  6. Carlotto, M. J. (1998). Spectral shape classification of Landsat Thematic Mapper imagery. Photogrammetric Engineering and Remote Sensing, 64, 905–913.Google Scholar
  7. Cavayas, F. (1987). Modelling and correction of topographic effect using multi-temporal satellite images. Canadian Journal of Remote Sensing, 13, 49–67.Google Scholar
  8. CEOS (1995). Leadership to Ensure High-Quality Earth Observation Data: A Strategic Vision. Committee on Earth Observation Satellites, Working Group on Calibration and Validation.Google Scholar
  9. Chavez, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24,459–479.CrossRefGoogle Scholar
  10. Chen, J. M., & Cihlar, J. (1997). A hotspot function in a simple bidirectional reflectance model for satellite applications. Journal of Geophysical Research — Atmospheres, 102, 25907–25913.CrossRefGoogle Scholar
  11. Cihlar, J., Chen, J., Li, Z., Latifovic, R., Fedosejevs, G., Adair, M., Park, W., Fraser, R., Trishchenko, A., Guidon, B., Stanley, D., & Morse, D. (2002). GeoComp-n, An advanced system for the processing of coarse and medium resolution satellite data — Part 2: Biophysical products for northern ecosystems. Canadian Journal of Remote Sensing, 28, 21–44.CrossRefGoogle Scholar
  12. Cracknell, A. P. (1998). Synergy in remote sensing — What’s in a pixel? International Journal of Remote Sensing, 19, 2025–2047.CrossRefGoogle Scholar
  13. Crist, E. P. (1985). A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sensing of Environment, 17, 301–306.CrossRefGoogle Scholar
  14. Crist, E. P. & Cicone R. C. (1984). A physically-based transformation of Thematic Mapper data — the TM tasseled cap. IEEE Transactions on Geoscience and Remote Sensing, GE- 22, 256–263.CrossRefGoogle Scholar
  15. Dinguirard, M., & Slater, P. N. (1999). Calibration of space-multispectral imaging sensors: A review. Remote Sensing of Environment, 68, 194–205.CrossRefGoogle Scholar
  16. Eliason, P., Soderblom, L. A., & Chavez, P. S. (1981). Extraction of topographic and spectral albedo function for multispectral images. Photogrammetric Engineering and Remote Sensing, 48, 1571–1579.Google Scholar
  17. Elvidge, C. D., Yuan, D., Weerackoon, R. D., & Lunneta, R. S. (1995). Relative radiometric normalization of Landsat Multispectral Scanner (MSS) data using an automatic scattergram controlled regression. Photogrammetric Engineering and Remote Sensing, 61, 1255–1260.Google Scholar
  18. Fedosejevs, G., O’Neill, N. T., Royer, A., Teillet, P. M., Bokoye, A. I., & McArthur, B. (2000). Aerosol optical depth for atmospheric correction of AVHRR composite data. Canadian Journal of Remote Sensing, 26,273–284.Google Scholar
  19. Fisheill, N. T., Teillet, P. M., Royer, A., Blanchet, J. -P., Aubé M., Thulasiraman, S., Vachon, F., Gong, S., & Versi, M. er, P. (1997). The pixel: a snare and a delusion. International Journal of Remote Sensing, 18,679–685.CrossRefGoogle Scholar
  20. Flittner, D. E., & Slater, P. N. (1991). Stability of narrow-band filter radiometers in the solar-reflective range. Photogrammetric Engineering and Remote Sensing, 57, 165–171.Google Scholar
  21. Franklin, S. E. (1987). Terrain analysis from digital patterns in geomorphometry and Landsat MSS spectral response. Photogrammetric Engineering and Remote Sensing, 53, 59–65.Google Scholar
  22. Franklin, S. E. (1991). Image transformations in mountainous terrain and the relationship to surface patterns. Computers & Geosciences, 17, 1137–1149.CrossRefGoogle Scholar
  23. Freemantle,  J., O’Neil, N.T., Teillet, P. M., Royer, A., Blanchet, J. –P., Aubé, M., Thulasiraman, S., V., Vachon,  F., Gong, S., & Versi, M. (2002). Using Web services for atmospheric correction of remote sensing data. Proceedings of the 2002 International Geoscience and Remote Sensing Symposium (IGARSS’02) and the Twenty-Fourth Canadian Symposium on Remote Sensing, in press. Toronto, Ontario, Canada.Google Scholar
  24. Goetz, A. F. H., Heidebrecht, K. B., & Chrien, T. G. (1995). High accuracy in-flight wavelength calibration of imaging spectrometry data. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, 1,67–69. AVIR1S Workshop, Pasadena, California.Google Scholar
  25. Goward, S. N., Markham, B. L., Dye, D. G., Dulaney, W., & Yang, J. (1991). Normalized Difference Vegetation Index measurements from the Advanced Very High Resolution Radiometer. Remote Sensing of Environment, 35,257–277.CrossRefGoogle Scholar
  26. Gu, D., & Gillespie, A. (1998). Topographic normalization of Landsat TM images of forest based on subpixel sun-canopy-sensor geometry. Remote Sensing of Environment, 64, 166–175.CrossRefGoogle Scholar
  27. Guyot, G., & Gu, X. F. (1994). Effects of radiometric corrections on NDVI determined from SPOT-HRV and Landsat-TM data. Remote Sensing of Environment, 49, 169–180.CrossRefGoogle Scholar
  28. Hall, F. G., Strebel, D. E., Nickerson, J. E., & Goetz. S. J. (1991). Radiometric rectification: toward a common radiometric response among multidate, multisensor images. Remote Sensing of Environment, 35,11–27.CrossRefGoogle Scholar
  29. Hall, F. G., Shimabukuro, Y. E., & Huemmrich, K. F. (1995). Remote sensing of forest biophysical structure in boreal stands of picea mariana using mixture decomposition and geometric reflectance models. Ecological Applications, 5, 993–1013.CrossRefGoogle Scholar
  30. Helder, D., Barker, J. Boncyk, W., & Markham, B. (1996). Short term calibration of Landsat TM: Recent findings and suggested techniques. Proceedings of the 1996 International Geoscience and Remote Sensing Symposium (IGARSS’96), 1286–1289. Lincoln, Nebraska, USA.Google Scholar
  31. Holben, B, N., & Justice, C. O. (1981). An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data. International Journal of Remote Sensing, 2, 115–133.CrossRefGoogle Scholar
  32. Johnson, R. L., Peddle, D. R., & Hall, R. J. (2000). A modeled-based sub-pixel scale mountain terrain normalization algorithm for improved LAI estimation from airborne casi imagery. Proceedings, 22 nd Canadian Symposium on Remote Sensing, 415–424. Victoria, BC. Canada. August 21–25,2000. Canadian Aeronautics and Space Institute, Ottawa.Google Scholar
  33. Kauth, R. J., & Thomas, G. S. (1976). The tasseled cap — A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Proc, Machine Processing of Remotely Sensed Data, 4B, 41–51.Google Scholar
  34. Li, X., & Strahler, A. H. (1992). Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30, 276–292.CrossRefGoogle Scholar
  35. MacDonald, J. S. (1997). From space data to information. Proceedings of ISPRS Joint Workshop on Sensors and Mapping From Space, 233–240. Hannover, Germany.Google Scholar
  36. Markham, B. L., & Barker, J. L. (1987). Radiometric properties of U.S. processed Landsat MSS data. Remote Sensing of Environment, 22, 39–71.CrossRefGoogle Scholar
  37. Marsh, S. E., & Lyon, R. J. P. (1981). Quantitative relationships of near-surface spectra to Landsat radiometric data. Remote Sensing of Environment, 10, 241–261.CrossRefGoogle Scholar
  38. Meyer, P., Itten, K. L., Kellenberger, T., Sandmeier, S., & Sandmeier, R. (1993). Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS Journal of Photogrammetry and Remote Sensing, 48, 17–28.CrossRefGoogle Scholar
  39. Milton, E. J. (1987). Principles of field spectroscopy. International Journal of Remote Sensing, 8, 1807–1827.CrossRefGoogle Scholar
  40. O’Neill, N. T., Teillet, P. M., Royer, A., Blanchet, J. -P., Aubé M., Freemantle, J., Gong, S., Stanley, D., Thulasiraman, S., & Vachon, F. (2002). Concept of a central optical parameter server for atmospheric corrections of remote sensing data. Proceedings of the 2002 International Geoscience and Remote Sensing Symposium (IGARSS’02) and the Twenty-Fourth Canadian Symposium on Remote Sensing, in press. Toronto, Ontario, Canada.Google Scholar
  41. Peddle, D. R., Hall, F. G., & LeDrew, E. F. (1999). Spectral mixture analysis and geometric optical reflectance modeling of boreal forest biophysical structure. Remote Sensing of Environment, 67,288–297.CrossRefGoogle Scholar
  42. Peddle, D. R., White, H. P., Soffer, R. J., Miller J. R., & LeDrew, E. F. (2001a). Reflectance processing of remote sensing spectroradiometer data. Computers & Geosciences, 27, 203–213.CrossRefGoogle Scholar
  43. Peddle, D. R., Brunke, S. P., & Hall, F. G. (2001b). A comparison of spectral mixture analysis and ten vegetation indices for estimating boreal forest biophysical information from airborne data. Canadian Journal of Remote Sensing, 27, 627–635.Google Scholar
  44. Peddle, D. R., Franklin, S. E., Johnson, R. L., Lavigne, M. A., & Wulder, M. A. (2002). Structural change detection in a disturbed conifer forest using a geometric optical reflectance model in multiple-forward mode. IEEE Transactions on Geoscience and Remote Sensing, in press.Google Scholar
  45. Poros, D. J., & Peterson, C. J. (1985). Methods for destriping Landsat Thematic Mapper images — A feasibility study for an online destriping process in the Thematic Mapper Image Processing System (TIPS). Photogrammetric Engineering and Remote Sensing, 51, 1371–1378.Google Scholar
  46. Pouch, G., & Compagna, D. (1990). Hyperspherical directional cosines for separation of spectral and illumination information in digital scanner data. Photogrammetric Engineering and Remote Sensing, 56, 475–479.Google Scholar
  47. Price, J. C. (1987). Calibration of satellite radiometers and the comparison of vegetation indices. Remote Sensing of Environment, 21, 15–27.CrossRefGoogle Scholar
  48. Richter, R. (1997). Correction of atmospheric and topographic effects for high spatial resolution satellite images. International Journal of Remote Sensing, 18, 1099–1 111.Google Scholar
  49. Roderick, M., Smith, R., & Cridland, S. (1996). The precision of the NDVI derived from AVHRR Observations. Remote Sensing of Environment, 56, 57–65.CrossRefGoogle Scholar
  50. Schott, J. R., Salvaggio, C, & Volchok, W. J. (1988). Radiometric scene normalization using psuedoinvariant features. Remote Sensing of Environment, 26, 1–16CrossRefGoogle Scholar
  51. Schott, J. R. (1997). Remote Sensing The Image Chain Approach, ISBN 0-19-508726-7. Oxford University Press, Inc., 198 Madison Avenue, New York, New York 10016, USA.Google Scholar
  52. Singh, A. (1985). Thematic Mapper radiometric calibration research and development results and performance. Photogrammetric Engineering and Remote Sensing, 51, 1379–1383.Google Scholar
  53. Slater, P. N. (1980). Remote Sensing, Optics and Optical Systems, ISBN 0-201-07250-5. Addison-Wesley Publishing Company, Reading, Massachusetts, USA.Google Scholar
  54. Smith, J. A., Lin, T. L., & Ranson, K. J. (1980). The Lambertian assumption and Landsat data. Photogrammetric Engineering and Remote Sensing, 46, 1183–1189.Google Scholar
  55. Song, C, Woodcock, C. E., Seto, K. C, Lenney, M. P., & Macomber, S. A. (2001). Classification and change detection using Landsat TM data: when and how to correct atmospheric effects. Remote Sensing of Environment, 75, 230–244.CrossRefGoogle Scholar
  56. Staenz, K., Williams, D. J., Fedosejevs, G., & Teillet, P. M. (1994). Surface reflectance retrieval from imaging spectrometer data using three atmospheric codes. Proceedings of SPJEEUROPTO’94, 2318, 17–28. Rome, Italy.Google Scholar
  57. Suits, G. H., Malila, W. A., & Weller, T. M. (1988). The prospects for detecting spectral shifts due to satellite sensor ageing. Remote Sensing of Environment, 26, 17–29.CrossRefGoogle Scholar
  58. Teillet, P. M., Guindon, B., & Goodenough, D. G. (1982). On the slope aspect correction of multi spectral scanner data. Canadian Journal of Remote Sensing, 8, 84–106.Google Scholar
  59. Teillet, P. M. (1989). Surface reflectance retrieval using atmospheric correction algorithms. Proceedings of the 1989 International Geoscience and Remote Sensing Symposium (IGARSS’89) and the Twelfth Canadian Symposium on Remote Sensing, 864-867. Vancouver, B.C., Canada.Google Scholar
  60. Teillet, P. M., & Irons, J. R. (1990). Spectral variability effects on the atmospheric correction of imaging spectrometer data for surface reflectance retrieval. Proceedings of the 1SPRS Commission VII Symposium, 579–583. Victoria, B.C., Canada.Google Scholar
  61. Teillet, P. M. (1990). Effects of spectral shifts on sensor response. Proceedings of the ISPRS Commission VII Symposium, 59–65. Victoria, B.C., Canada.Google Scholar
  62. Teillet, P. M., & Fedosejevs, G. (1995). On the dark target approach to atmospheric correction of remotely sensed data. Canadian Journal of Remote Sensing, 21, 374–387.Google Scholar
  63. Teillet, P. M. (1997). A status overview of earth observation calibration/validation for terrestrial applications. Teillet, P. M. (ed.). Canadian Journal of Remote Sensing: Special Issue on Calibration/Validation, 23, 291–298.Google Scholar
  64. Teillet, P. M., Staenz, K., & Williams, D. J. (1997a). Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices for forested regions. Remote Sensing of Environment, 61, 139–149.CrossRefGoogle Scholar
  65. Teillet, P. M., Horler, D. N. H., & O’Neill, N. T. (1997b). Calibration/validation, stability monitoring, and quality assurance in remote sensing: A new paradigm. Canadian Journal of Remote Sensing, 23, 401–414.Google Scholar
  66. Teillet, P. M., Fedosejevs, G., Gauthier, R. P., O’Neill, N. T., Thome, K. J., Biggar, S. F., Ripley, H., & Meygret, A. (2001). A generalized approach to the vicarious calibration of multiple earth observation sensors using hyperspectral data. Remote Sensing Environment, 77, 304–327.CrossRefGoogle Scholar
  67. Teillet, P. M., Barker, J. L. Markham,B. L., Irish, R. R., Fedosejevs, G., & Storey,J. C. (2001b). Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sensing of Environment, 78, 39–54.CrossRefGoogle Scholar
  68. Thome, K. J. (2001). Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sensing of Environment, 78, 27–38.CrossRefGoogle Scholar
  69. Tokola, T., Löfman, S., & Erkkilä A. (1999). Relative calibration of multitemporal Landsat data for forest cover change detection. Remote Sensing of Environment, 68, 1–11.CrossRefGoogle Scholar
  70. Townshend, J. R. G. (1981). The spatial resolving power of earth resources satellites. Progress in Physical Geography, 5, 32–55.CrossRefGoogle Scholar
  71. Townshend, J. R. G., Huang, C, Kalluri, S. N. V., Defines, R. S., & Liang, D. (2000). Beware of per-pixel characterization of land cover. International Journal of Remote Sensing, 21, 839–843.CrossRefGoogle Scholar
  72. Townshend, J. R. G., Justice, C. O., Skole, D., Malingreau, J. -P., Cihlar, J., Teillet, P. M, Sadowski, F., Ruttenberg, S. (1994). The 1 km resolution global data set: Needs of the International Geosphere Biosphere Programme. International Journal of Remote Sensing, 15,3417–3441.CrossRefGoogle Scholar
  73. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.CrossRefGoogle Scholar
  74. Yuan, D., & Elvidge, C. D. (1993). Application of relative radiometric rectification procedure to Landsat data for use in change detection. Proceedings of the Workshop on Atmospheric Correction of Landsat Imagery, 162–166. Landsat Program Office, Torrance, CA, USA.Google Scholar
  75. Yuan, D., & Elvidge, C. D. (1996). Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 51, 117–126.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Derek R. Peddle
    • 1
  • Philippe M. Teillet
    • 2
  • Michael A. Wulder
    • 3
  1. 1.Department of GeographyUniversity of LethbridgeLethbridgeCanada
  2. 2.Canada Centre for Remote SensingNatural Resources CanadaOttawaCanada
  3. 3.Canadian Forest Service (Pacific Forestry Centre)Natural Resources CanadaVictoriaCanada

Personalised recommendations