Skip to main content

Regional Forest Land Cover Characterisation using Medium Spatial Resolution Satellite Data

  • Chapter
Remote Sensing of Forest Environments

Abstract

Increasing demands on forest resources require comprehensive, consistent and up-to-date information on those resources at spatial scales appropriate for management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al. 1996; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resolution imagery. High spatial resolution satellite data such as IKONOS and Quick Bird images (Aplin et al. 1997), though usable for deriving detailed forest information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall regional applications because of extremely high data cost, huge data volume, and lack of contiguous coverage over large areas. Forest studies over large areas have often been accomplished using data acquired by intermediate spatial resolution sensor systems, including the Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour I’Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS) of the Indian Remote Sensing satellite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aplin, P., Atkinson, P. M., & Curran, P. J. (1997). Fine spatial resolution satellite sensors for the next decade. International Journal of Remote Sensing, 18, 3873–3881.

    Article  Google Scholar 

  • Arvidson, T., Gasch, J., & Goward, S. N. (2001). Landsat 7’s long-term acquisition plan — An innovative approach to building a global imagery archive. Remote Sensing of Environment, 78, 13–26.

    Article  Google Scholar 

  • Bauer, E., & Kohavi, R. (1998). An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning, 5, 1–38.

    Google Scholar 

  • Bauer, M. E., Burk, T. E., Ek, A. R., Coppin, P. R., Lime, S. D., Walsh, T. A., Walters, D. K., Befort, W., & Heinzen, D. F. (1994). Satellite inventory of Minnesota forest resources. Photogrammetric Engineering & Remote Sensing, 60, 287–298.

    Google Scholar 

  • Campbell, J. B. (1981). Spatial correlation effects upon accuracy of supervised classification of land cover. Photogrammetric Engineering & Remote Sensing, 47, 355–363.

    Google Scholar 

  • Chan, J. C.-W., Huang, C, & DeFries, R. S. (2001). Enhanced algorithm performance for land cover classification using bagging and boosting. IEEE Transactions on Geoscience and Remote Sensing, 39, 693–695.

    Article  Google Scholar 

  • Cihlar, J., Ly, H., & Xiao, Q. (1996). Land cover classification with AVHRR multichannel composites in northern environments. Remote Sensing of Environment, 58, 36–51.

    Article  Google Scholar 

  • Cohen, W. B., Fiorella, M, Bray, J., Helmer, E., & Anderson, K. (1998). An efficient and accurate method for mapping forest clearcuts in the Pacific Northwest using Landsat imagery. Photogrammetric Engineering & Remote Sensing, 64, 293–300.

    Google Scholar 

  • Cohen, W. B., Maiersperger, T. K., Spies, T. A., & Oetter, D. R. (2001). Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. International Journal of Remote Sensing, 22, 2279–2310.

    Google Scholar 

  • Cohen, W. B., Spies, T. A., & Fiorella, M. (1995). Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. International Journal of Remote Sensing, 16, 721–746.

    Article  Google Scholar 

  • Congalton, R., & Green, K. (1993). A practical look at sources of confusion in error matrix generation. Photogrammetric Engineering & Remote Sensing, 59, 641–644.

    Google Scholar 

  • Coppin, P. R., & Bauer, M. E. (1994). Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features. IEEE Transactions on Geoscience and Remote Sensing, 32, 918–927.

    Article  Google Scholar 

  • DeFries, R. S., Hansen, M., Townshend, J. R. G., & Sohlberg, R. (1998). Global land cover classifications at 8km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. International Journal of Remote Sensing, 19, 3141–3168.

    Article  Google Scholar 

  • DeFries, R. S., & Townshend, J. R. G. (1993). Global land cover assessments: comparisons of ground-based data sets to classifications with AVHRR data. Goody, G., & Curran, P. (Eds.). Environmental remote sensing from regional to global scales. John Wiley and Sons, Chichester.

    Google Scholar 

  • Edwards, T. C, Moisen, G. G., & Cutler, D. R. (1998). Assessing map accuracy in a remotely-sensed, ecoregion-scale cover-map. Remote Sensing of Environment, 63, 73–83.

    Article  Google Scholar 

  • Edwards, T. C, Scott, J. M, Homer, C. G., & Ramsey, R. D. (1993). Gap analysis: A geographic approach for assessing national biological diversity. Natural Resources and Environmental Issues, 2, 65–72.

    Google Scholar 

  • Fleming, M. D., & Hoffer, R. M. (1979). Machine processing of Landsat MSS data and DMA topographic data for forest cover-type mapping. Proceedings of the 1979 Machine Processing of Remotely Sensed Data Symposium, 377–408. Purdue University/LARS, West Lafayette, Indiana.

    Google Scholar 

  • Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61, 399–409.

    Article  Google Scholar 

  • Friedl, M. A., Brodley, C. E., & Strahler, A. H. (1999). Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Transactions on Geoscience and Remote Sensing, 37, 969–977.

    Article  Google Scholar 

  • Fuller, R. M., Groom, G. B., & Jones, A. R. (1994a). The land cover map of Great Britain: an automated classification of Landsat Thematic Mapper data. Photogrammetric Engineering & Remote Sensing, 60, 553–562.

    Google Scholar 

  • Fuller, R. M., Groom, G. B., & Wallis, S. M. (1994b). The availability of Landsat TM images of Great Britain. International Journal of Remote Sensing, 15, 1357–1362.

    Article  Google Scholar 

  • Hall, F. G., Townshend, J. R., & Engman, E. T. (1995). Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sensing of Environment, 51, 138–156.

    Article  Google Scholar 

  • Hansen, M., DeFries, R. S., Townshend, J. R. G., & Sohlberg, R. (2000). Global land cover classification at 1 km spatial resulution using a classification tree approach. International Journal of Remote Sensing, 21, 1331–1364.

    Article  Google Scholar 

  • Hansen, M., Dubayah, R., & DeFries, R. (1996). Classification trees: an alternative to traditional land cover classifiers. International Journal of Remote Sensing, 17, 1075–1081.

    Article  Google Scholar 

  • Henery, R. J. (1994). Methods for comparison. Michie, D., Spiegelhalte, D. J., & Taylor, C. C. (Eds.). Machine learning, neural and statistical classification, 107–130. Ellis Horwood, New York.

    Google Scholar 

  • Homer, C, Huang, C, Yang, L., & Wylie, B. (2002). Development of a circa 2000 land cover database for the United States. 2002 ASPRS-ACSM Annual Conference and FIG XXII Congress, Washington, D.C.

    Google Scholar 

  • Homer, C. G., Ramsey, R. D., Edwards, T. C, & Falconer, A. (1997). Landscape cover-type modeling using a multi-scene Thematic Mapper mosaic. Photogrammetric Engineering & Remote Sensing, 63, 59–67.

    Google Scholar 

  • Huang, C, Davis, L. S., & Townshend, J. R. G. (2002a). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23, 725–749.

    Article  Google Scholar 

  • Huang, C, & Townshend, J. R. G. (2002). A stepwise regression tree for non-linear approximation: applications to estimating subpixel land cover. International Journal of Remote Sensing, in press.

    Google Scholar 

  • Huang, C, Wylie, B., Homer, C, Yang, L., & Zylstra, G. (2002b). Derivation of a Tasseled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, 23, 1741–1748.

    Article  Google Scholar 

  • Huang, C, Yang, L., Wylie, B., & Homer, C. (2001). A strategy for estimating tree canopy density using Landsat 7 ETM+ and high resolution images over large areas. Third International Conference on Geospatial Information in Agriculture and Forestry, Denver, Colorado, CD-ROM

    Google Scholar 

  • Hutchinson, C. F. (1982). Techniques for combining Landsat and ancillary data for digital classification improvement. Photogrammetric Engineering and Remote Sensing, 48, 123–130.

    Google Scholar 

  • Irish, R. R. (2000). Landsat 7 science data user’s handbook. Report 430-15-01-003-0, NASA, http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html.

    Google Scholar 

  • Jensen, J. R. (1986). Introductory digital image processing: a remote sensing perspective. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Jones, B. T. & Smith, F. G. (2001). Mapping global land cover and changes economically and accurately: The GEOCOVER LC Approach. Third International Conference on Geospatial Information in Agriculture and Forestry. Denver, Colorado, CD-ROM.

    Google Scholar 

  • Kimes, D. S., Nelson, R. F., Salas, W. A., & Skole, D. L. (1999). Mapping secondary tropical forest and forest age from SPOT HRV data. International Journal of Remote Sensing, 20, 3625–3640.

    Article  Google Scholar 

  • Loveland, T. R., & Shaw, D. M. (1996). Multiresolution land characterisation: building collaborative partnerships. Proceedings of the ASPRS/GAP Symposium -- Gap analysis: a landscape approach to biodiversity planning, 83–89. Charlotte, North Carolina.

    Google Scholar 

  • Lunetta, R. S., & Balogh, M. E. (1999). Application of multi-temporal Landsat 5 TM imagery for wetland identification. Photogrammetric Engineering & Remote Sensing, 65, 1303–1310.

    Google Scholar 

  • Lunetta, R. S., & Sturdevant, J. A. (1993). The North American landscape characterization Landsat pathfinder project. Pecora 12 Symposium: Land information from space-based systems,363–369. Sioux Falls, South Dakota.

    Google Scholar 

  • Markham, B. L., & Barker, J. L. (1986). Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. EOSAT Landsat Technical Notes, 1, 3–8.

    Google Scholar 

  • McRoberts, R. E., Wendt, D. G., Nelson, M. D., & Hansen, M. H. (2002). Using a land cover classification based on satellite imagery to improve the precision of forest inventory area estimates. Remote Sensing of Environment, 81, 36–44.

    Article  Google Scholar 

  • Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 11, 118–125.

    Article  Google Scholar 

  • Pax-Lenney, M., Woodcock, C. E., Macomber, S. A., Gopal, S., & Song, C. (2001). Forest mapping with a generalized classifier and Landsat TM data. Remote Sensing of Environment, 11,241–250.

    Article  Google Scholar 

  • Quinlan, J. R. (1993). C4.5 programs for machine learning, Morgan Kaufmann Publishers, San Mateo, California.

    Google Scholar 

  • Richards, J. A. (1993). Remote sensing digital image analysis: an introduction. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Schott, J. R., Salvaggio, C, & Volghok, W. J. (1988). Radiometric scene normalization using pseudoinvariant features. Remote Sensing of Environment, 26, 1–16.

    Article  Google Scholar 

  • Scott, J. M, Davis, F., Csuti, B., Noss, R., Butterfleld, B., Groves, C, Anderson, H., Caicco, S., D’Erchia, F., Edwards, T. C, Ulliman, J., & Wright, R. G. (1993). Gap analysis: a geographic approach to protection of biological diversity. Wildlife Monographs, 123,1–41.

    Google Scholar 

  • Skole, D. L., Justice, C. O., Townshend, J. R. G., & Janetos, A. C. (1997). A land cover change monitoring program: strategy for an international effort. Mitigation and Adaptation Strategies for Global Change, 2, 157–175.

    Article  Google Scholar 

  • Stehman, S. V., & Czaplewski, R. L. (1998). Design and analysis for thematic map accuracy assessment: fundamental principles. Remote Sensing of Environment, 64, 331–344.

    Article  Google Scholar 

  • Sugumaran, R. (2001). Forest land cover classification using statistical artificial neural network approaches applied to IRS LISS — III sensor. Geocarto International, 16, 37–42.

    Article  Google Scholar 

  • Teillet, P. M, & Fedosejevs, G. (1995). On the dark target approach to atmospheric correction of remotely sensed data. Canadian Journal of Remote Sensing, 21, 374.

    Google Scholar 

  • Tou, J. T., & Gonzalez, R. C. (1974). Pattern recognition principles. Addison-Wesley Publishing Company, London.

    MATH  Google Scholar 

  • Townshend, J. R. G. (1992). Land cover. International Journal of Remote Sensing, 13, 1319–1328.

    Article  Google Scholar 

  • Tucker, C. J., Catlin, J. A., & Schneider, S. R. (1984). Monitoring vegetation in the Nile Delta with NOAA-6 and NOAA-7 AVHRR imagery. Photogrammetric Engineering and Remote Sensing, 50, 53–61.

    Google Scholar 

  • USDA (1991). State Soil Geographic Data Base (STATSGO): Data users guide. Report Miscellaneous Publication Number 1492. U.S. Department of Agriculture, Soil Conservation Service, U.S. Government Printing Office.

    Google Scholar 

  • Vogelmann, J. E., Howard, S. M., Yang, L., Larson, C. R., Wylie, B. K., & Driel, N. V. (2001). Completion of the 1990s national land cover data set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogrammetric Engineering & Remote Sensing, 67, 650–662.

    Google Scholar 

  • Vogelmann, J. E., Sohl, T., & Howard, S. M. (1998). Regional characterisation of land cover using multiple sources of data. Photogrammetric Engineering & Remote Sensing, 64, 45–57.

    Google Scholar 

  • Yang, L., Homer, C, Hegge, K., Huang, C, & Wylie, B. (2001). A Landsat 7 Scene Selection Strategy for a National Land Cover Database. IEEE International Geoscience and Remote Sensing Symposium. Sydney, Australia, CD ROM, 1 disk.

    Google Scholar 

  • Zhu, Z., & Evans, D. L. (1994). US forest types and predicted percent forest cover from AVHRR data. Photogrammetric Engineering & Remote Sensing, 60, 525–531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, C., Homer, C., Yang, L. (2003). Regional Forest Land Cover Characterisation using Medium Spatial Resolution Satellite Data. In: Wulder, M.A., Franklin, S.E. (eds) Remote Sensing of Forest Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0306-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0306-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5014-9

  • Online ISBN: 978-1-4615-0306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics