Skip to main content

Overall Performance of Advanced Glazing Windows in Nonresidential Buildings: Heat Extraction and Energy Requirements

  • Chapter
  • 467 Accesses

Abstract

Industries in these last years have developed and produced different types of transparent materials and light control systems to improve the design and the operation of buildings to take full advantage of the energy saving potential coming from daylight. Building energy demand assessment requires an integrated approach of the visual and thermal management, that is realized both by the automatic control systems and by the occupants which can override control systems to suit their own comfort requirements. This paper analyses the HVAC cooling design peak and the energy demand connected to the use of advanced glazing materials in conjunction with light control systems for a typical office room in Mediterranean climate. The approach is based on an hourly simulation program IENUS (Integrated ENergy Use Simulation), that integrates environment visual and thermal aspects. IENUS implements thermal aspects by the transfer function method for a Typical Meteorological Year (TMY) and visual aspects by the computer package Super lite. Heat extraction peak and seasonal energy consumption are analyzed for different glazing systems, daylight control strategies with and without occupants interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arasteh D., Reilly S., Rubin M. A Versatile Procedure for Calculating Heat Transfer Through Windows. Ashrae Transactions. 1989; 95(2).

    Google Scholar 

  2. Arasteh D. Window 4.1, LBL 35298, Lawrence Berkeley Laboratory, Berkeley, CA. 1994.

    Google Scholar 

  3. Ashrae “Handbook of Fundamentals”. American Society of Heating, Refrigerating and Air Conditioning Engineers, New York. 1993.

    Google Scholar 

  4. Baker N. Strategic Design Tools for Non Domestic Buildings. Proc. Passive & Low Energy Architecture PLEA 91, Seville Kluwer, Dordrecht. 1991.

    Google Scholar 

  5. Baker N., Steemers K. The LT Method 2.0: An Energy Design Tool for Non-Domestic Buildings. General Information Report, Best Practice Program, Building Research Conservation Unit (BRECSU), Building Research Establishment, UK. 1993.

    Google Scholar 

  6. CEN prEN 832, Draft European Standard: Thermal Performance of Buildings- Calculation of Energy Use for Heating — Residential Buildings. CEN Comite Europeen de Normalisation. 1995.

    Google Scholar 

  7. Chauvel P., Collins J.B., Dogniaux R., Longmore J. Solid Angle Applied to Visual Comfort Problems. Light & Lighting. 1962; 55:146–58.

    Google Scholar 

  8. CNR, Repertorio delle Caratteristiche Termofisiche dei Componenti Edilizi Opachi e Trasparenti. CNR Progetto Finalizzato Energetica, sub-project RERE. 1982.

    Google Scholar 

  9. Collares-Pereira M., Rabl A. The Average Distribution of Solar Radiation — Correlation between Diffuse and Hemispherical Daily and Hourly Insolation Values. Solar Energy. 1979; 22:175.

    Article  Google Scholar 

  10. Cucumo M., Kaliakatsos D., Mannelli V. Modelli di Calcolo della Radiazione Oraria Solare in Giornate Serene. CDA. 1999; 6:547–57.

    Google Scholar 

  11. Erbs D., Kein A., Duffle J. Estimation of the Diffuse Solar Radion Fraction for Hourly, Daily and Monthly-Average Glogal Radiation. Solar Energy. 1982; 28:293.

    Article  Google Scholar 

  12. Erhron H., Stoffel J., Szermanm M. Adeline 2.0-Using Computer Tools to Evaluate Daylighting and Electric Lighting Applications in Buildings. Proceedings of European Conference on Energy-Efficient Lighting, 18th-21st June, New Castle upon Tyne, England. 25–31, 1995.

    Google Scholar 

  13. Fanchiotti A., Polato P., Daneo A., Rossi G., Vio M. Heatlux: New Development and Validation. Proc. of 7th European Lighting Conference, Herriot-Watt University, Edinburgh. UK. 1993.

    Google Scholar 

  14. Grau K., Johnsen K. Tsbi3 — Computer Program for Thermal Simulation of Buildings. Danish Building Research Institute, Horsholm, Denmark. 1994.

    Google Scholar 

  15. Gugliermetti F., Sili A. Climate Effects in the Design of Glazed Surfaces. L’Industria delle Costruzioni. 1988; 198: 52–60.

    Google Scholar 

  16. Gugliermetti F., Grossi L. Prestazioni Energetiche delle Superfici Trasparenti Innovative in Edifici ad Uso Non Abitativo. Proc. of 41° Cong. AICAR, 23–25 March, Milano, Italy. 2000.

    Google Scholar 

  17. Guyemard C. A Two-Band Model for the Calculation of Clear Sky Solar Irradiance, Illuminance and Photosynthetically Active Radiation at Earth’s Surface. Solar Energy 1989; 43 (5): 253–65.

    Article  Google Scholar 

  18. Guyemard C. Critical Analysis and Performance Assessment of Clear Sky Solar Irradiance Models using Theoretical and Measured Data. Solar Energy 1993; 51 (2): 121–28.

    Article  Google Scholar 

  19. Hasse K. Derob-Lth for Windows, Rep. Tabk-95/7019, Lund Institute of Technology, Department of Building Science, Lund University, Sweden. 1995.

    Google Scholar 

  20. Hopkinson R.G. Glare from Daylight in Buildings. Applied Ergonomics. 1972; 3.

    Google Scholar 

  21. Hopkinson R.G. Glare from Windows. J. of Construction Research and Development. 1970; 2.

    Google Scholar 

  22. Hopkinson R.G. Glare from Windows. J. of Construction Research and Development. 1971; 3.

    Google Scholar 

  23. Hunt D. Predicting Artificial Lighting Use, a Method Based on Observed Patterns of Behaviour. Lighting Research and Technology. 1980; 11(2).

    Google Scholar 

  24. Iqbal M. An Introduction of Solar Radiation, Academic Press, Toronto. 1983.

    Google Scholar 

  25. Judkoff R., Neymark J. Building Energy Simulation Test and Diagnostic Method. IEA, National Renewable Energy Laboratory, Golden, CO. 1995.

    Book  Google Scholar 

  26. Khemlani L. Genewin: A Generative Computer Tool For Window Design in Energy-Conscious Architecture. Building and Environment. 1995; 30 (1): 73–18.

    Article  Google Scholar 

  27. Liu B., Jordan C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Solar Energy. 1960; 4 (1).

    Google Scholar 

  28. Lomas K.J., Eppel H., Martin C., Bloomfield D. Empirical Validation of Thermal Building Simulation Programs Using Test Room Data. Final Report, IEA Task 12 Annex 21, 1, CRC Ltd., Building Research Establishment, Garston, Watford, UK. 1994.

    Google Scholar 

  29. Mazzarella L. Dati climatici G. De Giorgio. Proc. of Giornata di Studio Giovanni De Giorgio, Politecnicio di Milano, 18 Nov., Milano. 1997.

    Google Scholar 

  30. McQuiston F., Spitler J. Cooling and Heating Load Calculation Manual, 2nd ed., ASHRAE. 1992.

    Google Scholar 

  31. Mitalas G.P. Transfer Function Method, Ashrae Journal. 1972; 14 (12).

    Google Scholar 

  32. Page J. Prediction of Solar Radiation on Inclinated Surfaces. Reidel Publishing Company, Dordrecht, Holland. 1986.

    Google Scholar 

  33. Petherbridge P., Longmore J. Solid Angles Applied to Visual Comfort problems. Light & Lighting. 1962; 55.

    Google Scholar 

  34. Place W. et al. The Predicted Impact of Roof Aperture Design on the Energy Performance of Offices Buildings. Energy and Buildings. 1984; 6: 361–73.

    Article  Google Scholar 

  35. Schultz J., Svendsen S. Winsim: A Simple Simulation Program for Evaluating the Influence of Windows on Heating Demand and Risk of Overheating, Solar Energy. 1998; 63 (4): 251–58.

    Article  CAS  Google Scholar 

  36. Selkowitz S. Superlite User Documentation, Windows and Daylighting Group, LBL, California. 1983.

    Google Scholar 

  37. Szerman M. Effects of Daylight Utilization on Energetic Behaviour of Building, Ph.D. thesis reported in: Survey Simple Design Tool, Report IEA SHC TASK 2I/ECBCS Annex 29, May 1999.

    Google Scholar 

  38. Winkelmann F., Selkowitz S. Daylighting Simulation in Doe-2 Building Energy Analysis Program, LBL-18508, Lawrence Berkeley Laboratory, Berkeley, CA. 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gugliermetti, F., Grossi, L. (2002). Overall Performance of Advanced Glazing Windows in Nonresidential Buildings: Heat Extraction and Energy Requirements. In: Afgan, N.H., da Graça Carvalho, M. (eds) New and Renewable Technologies for Sustainable Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0296-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0296-8_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5009-5

  • Online ISBN: 978-1-4615-0296-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics