EEG and ERP Imaging of Brain Function

  • Alan Gevins
  • Michael E. Smith
  • Linda K. McEvoy

Abstract

The purpose of functional brain mapping is to localize patterns of neuronal activity associated with sensory, motor, and cognitive functions, or with disease processes. To be complete, an imaging modality needs near millimeter precision in localizing regions of activated tissue and sub-second temporal precision for characterizing changes in patterns of activation over time. Increasingly fine anatomical resolution is available with functional magnetic resonance imaging (fMRI). However, fMRI is an indirect measure of neuronal electrical activity whose temporal resolution is too gross to resolve the rapidly shifting patterns of activity that are characteristic of actual neurophysiological processes. In contrast, electroencephalography (EEG) and event-related potential (ERP) methods have a temporal resolution typically in the one to five millisecond range, depending on the AID rate. For simplicity the term EEG is used here in a general sense to refer both to recordings of brain electrical activity and, except where noted, to recordings of brain magnetic activity called magnetoencephalograms or MEGs. The nature of MEG recording technology and the relative strengths and weaknesses of EEG versus MEG approaches have been reviewed elsewhere (Cohen & Cuffin, 1991; Leahy et al., 1998; Williamson & Kaufman, 1987). From a broad perspective that considers all neuroimaging modalities, the differences between EEG and MEG are slight relative to their similarities.

Keywords

Fatigue Covariance Coherence Immobilization Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, H. (1929). Uber das Elektroenzephalogramm des Menschen. Archives of Psychiatry, 87 (Nervenk), 527–570.CrossRefGoogle Scholar
  2. Brazier, M.A.B., & Casby, J.U. (1952). Crosscorrelation and autocorrelation studies of electroencephalographic potentials. Electroencephalography and Clinical Neurophysiology, 4, 201–211.PubMedCrossRefGoogle Scholar
  3. Bressler, S.L., Coppola, R., & Nakamura, R. (1993). Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature, 366, 153–155.PubMedCrossRefGoogle Scholar
  4. Callaway, E., & Harris, P. (1974). Coupling between cortical potentials from different areas. Science, 183, 873–875.PubMedCrossRefGoogle Scholar
  5. Cohen, D., & Cuffin, B.N. (1991). EEG versus MEG localization accuracy: Theory and experiment. Brain Topography, 4, 95–103.PubMedCrossRefGoogle Scholar
  6. Fender, D.H. (1987). Source localization of brain electrical activity. In A.S. Gevins & A. Rémond (Eds.), Methods of analysis of brain electrical and magnetic signals. Vol. 1 (pp. 355–403). Amsterdam: Elsevier.Google Scholar
  7. George, J.S., Aine, C.J., Mosher, J.C., Schmidt, D.M., Ranken, D.M., Schlitt, H.A., Wood, C.C., Lewine, J.D., Sanders, J.A., & Belliveau, J.W. (1995). Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. Journal of Clinical Neurophysiology, 12, 406–431.PubMedCrossRefGoogle Scholar
  8. Gersch, W. (1987). Non-stationary multichannel time series analysis. In A.S. Gevins & A. Rémond (Eds.), Methods of analysis of brain electrical and magnetic signals. Vol. 1 (pp. 261–296). Amsterdam: Elsevier.Google Scholar
  9. Gevins, A. (1998). The future of electroencephalography in assessing neurocognitive functioning. Electroencephalograph and Clinical Neurophysiology, 106, 165–172.CrossRefGoogle Scholar
  10. Gevins, A., Le, J., Brickett, P., Reutter, B., & Desmond, J. (1993) Seeing through the skull: Advanced EEGs use MRIs to accurately measure cortical activity from the scalp. Brain Topography, 4, 125–131.CrossRefGoogle Scholar
  11. Gevins, A., Leong, H., & Smith, M.E., Le, J. & Du, R. (1995). Mapping cognitive brain function with modem high resolution electroencephalography. Trends in Neurosciences, 18, 427–461.CrossRefGoogle Scholar
  12. Gevins, A., & Smith, M.E. (1999). Detecting transient cognitive impairment with EEG pattern recognition methods. Aviation, Space, and Environmental Medicine, 70, 1018–1024.PubMedGoogle Scholar
  13. Gevins, A., & Smith, M.E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10, 829–839.PubMedCrossRefGoogle Scholar
  14. Gevins, A., Smith, M.E., Leong, H., McEvoy, L., Whitfield, S., Du, R., & Rush, G. (1998). Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Human Factors, 40, 79–91.PubMedCrossRefGoogle Scholar
  15. Gevins, A., Smith, M.E., McEvoy, L., & Yu, D. (1997). High resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7, 374–385.PubMedCrossRefGoogle Scholar
  16. Gevins, A., Smith, M.E., & McEvoy, L.K. (2002). Tracking the cognitive pharmacodynamics of psychoactive substances with combinations of behavioural and neurophysiological measures. Neuropsychophannacology, 26, 27–39.CrossRefGoogle Scholar
  17. Gevins, A., Smith, M.E., McEvoy, L.K., Leong, H. & Le, J. (1999). Electroencephalographic imaging of higher brain function. Philosophical Transactions of the Royal Society of London, 354, 1125–1133.PubMedCrossRefGoogle Scholar
  18. Gevins, A.S., & Bressler, S.L. (1988). Functional topography of the human brain. In G. Pfurtscheller (Ed.), Functional brain imaging (pp. 99–116). Toronto: Hans Huber Publishers.Google Scholar
  19. Gevins, A.S., Bressler, S.L., Morgan, N.H., Cutillo, B.A., White, R.M., Greer, D., & Illes, J. (1989a). Event-related covariances during a bimanual visuomotor task. Part I. Methods and analysis of stimulus and response-locked data. Electroencephalography and Clinical Neurophysiology, 74, 58–75.PubMedCrossRefGoogle Scholar
  20. Gevins, A.S., Bressler, S.L., Morgan, N.H., Cutillo, B.A., White, R.M., Greer, D., & Illes, J. (1989b). Event-related covariances during a bimanual visuomotor task. Part II. Preparation and feedback. Electroencephalography and Clinical Neurophysiology, 74, 147–160.PubMedCrossRefGoogle Scholar
  21. Gevins, A.S., Brickett, P., Costales, B., Le, J., & Reutter, B. (1990). Beyond topographic mapping: Towards functional-anatomical imaging with 124-channel EEGs and 3-D MRIs. Brain Topography, 3, 53–64.PubMedCrossRefGoogle Scholar
  22. Gevins, A.S., Cutillo, B.A., Desmond, J.E., Ward, M., & Bressler, S.L. (1994). Subdural grid recordings of distributed neocortical networks involved with somatosensory discrimination. Electroencephalography and Clinical Neurophysiology, 92, 282–290.PubMedCrossRefGoogle Scholar
  23. Gevins, A.S., Cutillo, B.A., & Smith, M.E. (1995). Regional modulation of high resolution evoked potentials during verbal and nonverbal matching tasks. Electroencephalography and Clinical Neurophysiology, 94, 129–147.PubMedCrossRefGoogle Scholar
  24. Gevins, A.S., Doyle, J.C., Cutillo, B., Schaffer, R.E., Tannehill, R.S., Ghannam, J.H., Gilcrease, V.A., & Yeager, C.L. (1981). Electrical potentials in human brain during cognition: New method reveals dynamic patterns of correlation. Science, 213, 918–922.PubMedCrossRefGoogle Scholar
  25. Gevins, A.S., Le, J., Brickett, P., Reutter, B., & Desmond, J. (1991). Seeing through the skull: Advanced EEGs use MRIs to accurately measure cortical activity from the scalp. Brain Topography, 4, 125–131.PubMedCrossRefGoogle Scholar
  26. Gevins, A.S., Le, J., Martin, N.K., Reutter, B., Desmond, J., & Brickett, P. (1994). High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalograph and Clinical Neurophysiology, 90, 337–358.CrossRefGoogle Scholar
  27. Gevins, A.S., Leong, H., Du, R., Smith, M.E., Le, J., DuRousseau, D., Zhang, J., & Libove, J. (1995). Towards measurement of brain function in operation al environments. Biological Psychology, 40, 169–186.PubMedCrossRefGoogle Scholar
  28. Gevins, A.S., Morgan, N.H., Bressler, S.L., Cutillo, B.A., White, R.M., Illes, J., Greer, D.S., Doyle, J.C., & Zeitlin, G.M. (1987). Human neuroelectric patterns predict performance accuracy. Science, 235, 580–585.PubMedCrossRefGoogle Scholar
  29. Gevins, A.S., Schaffer, R.E., Doyle, J.C., Cutillo, B., Tannehill, R.S., & Bressler, S.L. (1983). Shadows of thought: Shifting lateralization of human brain electrical patterns during brief visuomotor task. Science, 220, 97–99.PubMedCrossRefGoogle Scholar
  30. Gevins, A.S., Smith, M.E., Le, J., Leong, H., Bennett, J., Martin, N., McEvoy, L., Du, R., & Whitfield, S. (1996). High resolution evoked potential imaging of the cortical dynamics of human working memory. Electroencephalography and Clinical Neurophysiology, 98, 327–348.PubMedCrossRefGoogle Scholar
  31. Gorodnitsky, I.F., George, J.S., & Rao, B.D. (1995). Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalography and Clinical Neurophysiology, 95, 231–251.PubMedCrossRefGoogle Scholar
  32. Grave de Peralta-Menendez, R., & Gonzalez-Andino, S.L. (1998). A critical analysis of linear inverse solutions to the neuroelectric inverse problem. IEEE Transactions in Biomedical Engineering, 45, 440–448.CrossRefGoogle Scholar
  33. Heinze, H.J., Mangun, G.R., Burchert, W., Hinrichs, H., Scholz, M., Munte, T.F., Gos, A., Scherg, M., Johannes, S., & Hundeshagen, H. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543–546.PubMedCrossRefGoogle Scholar
  34. Hillyard, S.A., & Picton, T.W. (1987). Electrophysiology of cognition. In V.B. Mountcastle & F. Plum (Eds.), Handbook of Physiology: Vol. 5. Higher Functions of the Brain (2nd ed., pp. 519–584). Bethesda, MD: American Physiological Society.Google Scholar
  35. Jasper, H.H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalograph and Clinical Neurophysiology, 10, 371–375.Google Scholar
  36. Koles, Z.J. (1998). Trends in EEG source localization. Electroencephalograph and Clinical Neurophysiology, 106, 127–137.CrossRefGoogle Scholar
  37. Le, J., & Gevins, A.S. (1993). Method to reduce blur distortion from EEGs using a realistic head model. IEEE Transactions on Biomedical Engineering, 40, 517–528.PubMedCrossRefGoogle Scholar
  38. Le, J., Menon, V., & Gevins, A. (1994). Local estimate of the surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data. Electroencephalography and Clinical Neurophysiology, 92, 433–441.PubMedCrossRefGoogle Scholar
  39. Leahy, R.M., Mosher, J.C., Spencer, M.E., Huang, M.X., & Lewine, J.D. (1998). A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalography and Clinical Neurophysiology, 107, 159–173.PubMedCrossRefGoogle Scholar
  40. Livanov, M.N. (1977). Spatial organization of cerebral processes. New York: Wiley.Google Scholar
  41. Lopes da Silva, F., Pijn, J.P., & Boeijinga, P. (1989). Interdependence of EEG signals: Linear vs. nonlinear associations and the significance of time delays and phase shifts. Brain Topography, 2, 9–18.PubMedCrossRefGoogle Scholar
  42. Mangun, G.R., Buonocore, M.H., Girelli, M., & Jha, A.P. (1998). ERP and fMRI measures of visual spatial selective attention. Human Brain Mapping, 6, 383–389.PubMedCrossRefGoogle Scholar
  43. Mars, N.J., & Lopes da Silva, F.H. (1987). EEG analysis methods based on information theory. In A.S. Gevins & A. Remond (Eds.), Methods of Analysis of Brain Electrical and Magnetic Signals: Vol. 1 (pp. 297–307). Amsterdam: Elsevier.Google Scholar
  44. McEvoy, L.K., Pellouchoud, E., Smith, M.E.S., & Gevins, A. (2001). Neurophysiological signals of working memory in normal aging. Cognitive Brain Research, 11, 363–376.PubMedCrossRefGoogle Scholar
  45. McEvoy, L.K., Smith, M.E., & Gevins, A. (1998). Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice. Cerebral Cortex, 8, 563–574.PubMedCrossRefGoogle Scholar
  46. McEvoy, L.K., Smith, M.E., & Gevins, A. (2000). Test-retest reliability of cognitive EEG. Clinical Neurophysiology, 111, 457–463.PubMedCrossRefGoogle Scholar
  47. Miltner, W., Braun, C., Johnson Jr., R., Simpson, G.V., & Ruchkin, D.S. (1994). A test of brain electrical source analysis (BESA): A simulation study. Electroencephalography and Clinical Neurophysiology, 91, 295–310.PubMedCrossRefGoogle Scholar
  48. Nunez, P.L. (1981). Electric fields in the brain: The neurophysics of EEG. New York: Oxford University Press.Google Scholar
  49. Nunez, P.L., & Pilgreen, K.L. (1991). The spline-Laplacian in clinical neurophysiology: A method to improve EEG spatial resolution. Journal of Clinical Neurophysiology, 8, 397–413.PubMedCrossRefGoogle Scholar
  50. Regan, D. (1989). Human brain electrophysiology. New York: Elsevier.Google Scholar
  51. Scherg, M., & Von Cramon, D. (1985). Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalography and Clinical Neurophysiology, 62, 32–44.PubMedCrossRefGoogle Scholar
  52. Sereno, M.I. (1998). Brain mapping in animals and humans. Current Opinion in Neurobiology, 8, 188–194.PubMedCrossRefGoogle Scholar
  53. Simpson, G.V., Pflieger, M.E., Foxe, J.J., Ahlfors, S.P., Vaughan, J.H.G., Hrabe, J., Ilmoniemi, R.J., & Lantos, G. (1995). Dynamic neuroimaging of brain function. Journal of Clinical Neurophysiology, 12, 432–449.PubMedCrossRefGoogle Scholar
  54. Smith, M.E., Gevins, A., Brown, H., Karnik, A., & Du, R. (2001). Monitoring task load with multivariate EEG measures during complex forms of human computer interaction. Human Factors, 43, 366–380.PubMedCrossRefGoogle Scholar
  55. Smith, M.E., McEvoy, L.K., & Gevins, A. (1999). Neurophysiological indices of strategy development and skill acquisition. Cognitive Brain Research, 7, 389–404.PubMedCrossRefGoogle Scholar
  56. Tesche, C.D., Uusitalo, M.A., Ilmoniemi, R.J., Huotilainen, M., Kajola, M., & Salonen, O. (1995). Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalograph and Clinical Neurophysiology, 95, 189–200.CrossRefGoogle Scholar
  57. van den Broek, S.P., Reindeers, F., Donderwinkel, M., & Peters, M.J. (1998). Volume conductions effects in EEG and MEG. Electroencephalography and Clinical Neurophysiology, 106, 522–534.PubMedCrossRefGoogle Scholar
  58. Walter, D.O. (1963). Spectral analysis for electroencephalograms: Mathematical determination of neurophysiological relationships from records of limited duration. Experimental Neurology, 8, 155–181.PubMedCrossRefGoogle Scholar
  59. Wang, J.Z., Williamson, S.J., & Kaufman, L. (1993). Magnetic source imaging based on the minimum-norm least-squares inverse. Brain Topography, 5, 365–371.PubMedCrossRefGoogle Scholar
  60. Williamson, S.J., & Kaufman, L. (1987). In A.S. Gevins & A. Remond (Eds.), Handbook of electroencephalography and clinical neurophysiology, Vol. 1: Methods of analysis of brain electrical and magnetic signals (pp. 405–448). Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Alan Gevins
    • 1
  • Michael E. Smith
    • 1
  • Linda K. McEvoy
    • 1
  1. 1.San Francisco Brain Research Institute and SAM TechnologySan FranciscoUSA

Personalised recommendations