Skip to main content

Lateral and Orbital Prefrontal Cortex Contributions to Attention

  • Chapter

Abstract

The prefrontal cortex (PFCx) can be divided into the lateral, orbital and medial PFCx, which all contribute to attentional and novelty processing and flexible behaviors. The cytoarchitecture of lateral prefrontal cortex (LPFCx) is highly organized, differentiated, distinctly layered, granular isocortex while the orbitofrontal cortex (OFCx) is structurally more heterogeneous, less differentiated, agranular limbic cortex (Barbas, 2000). The LPFCx is interconnected with parietal/occipital visual association areas, posterior parietal heteromodal areas, and inferior temporal visual association areas (Kaufer & Lewis, 1999). Other main circuitries of the LPFCx include reciprocal connections with the cingulate and the orbitofrontal cortex. In contrast, the OFCx has extensive direct and indirect connections with limbic areas such as the amygdala complex, hypothalamus, and the hippocampal formation (Cavada et al., 2000), with additional interactions to the inferior temporal visual association areas and LPFCx (Kaufer & Lewis, 1999). The main connections of the LPFCx to association areas and the OFCx to limbic areas determine the primary behavioral functions of these areas, with the LPFCx well-suited for attentional and executive function and the OFCx for affective and reward-related functions.

Keywords

  • Prefrontal Cortex
  • Orbitofrontal Cortex
  • Clinical Neurophysiology
  • International Affective Picture System
  • Novelty Detection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-0294-4_6
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4615-0294-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbarian, S., Huntsman, M.M., Kim, J.J., Tafazolli, A., Potkin, S.G., Bunney, W.E., & Jones, E.G. (1995). GABAa receptor subunit gene expression in human prefrontal cortex: comparison of controls and schizophrenics. Cerebral Cortex. 5, 550–560.

    CrossRef  PubMed  CAS  Google Scholar 

  • Akbarian, S., Kim, J.J., Potkin, S.G., Hetrick, W.P., Bunney, W.E., & Jones, E.G. (1996). Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Archives of General Psychiatry, 53, 425–436.

    CrossRef  PubMed  CAS  Google Scholar 

  • Alain, C., Woods, D.L., & Knight, R.T. (1998). A distributed cortical network for auditory sensory memory in humans. Brain Research, 812, 23–37.

    CrossRef  PubMed  CAS  Google Scholar 

  • Alho, K., Woods, D.L., Algazi, A., Knight, R.T., & Näätänen, R. (1994). Lesions of frontal cortex diminish the auditory mismatch negativity. Electroencephalography and Clinical Neurophysiology, 91, 353–362.

    CrossRef  PubMed  CAS  Google Scholar 

  • Anderson, S.W., Bechera, A., Damasio, H., Tranel, D., & Damasio, A.R. (1999). Impairments in social and moral behavior related to early damage in human prefrontal corex. Nature Neuroscience. 2, 1032–1037.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bahramali, H., Gordon, E., Lim, C.L., Li, W., Lagapoulus, J., Rennie, C., & Meares, R.A. (1997). Evoked related potentials with and without an orienting reflex. Neuro Report, 8, 2665–2669.

    CAS  Google Scholar 

  • Barceló, P., Suwazono, S., & Knight, R.T. (2000). Prefrontal modulation of visual processing in humans. Nature Neuroscience, 3, 399–403.

    CrossRef  PubMed  Google Scholar 

  • Barch, D.M., Braver, T.S., Sabb, F.W., & Noll, D.C. (2000). Anterior cingulate and the monitoring of response conflict: Evidence from an tMRI study of overt verb generation. Journal of Cognltive Neuroscience, 12, 298–309.

    CrossRef  CAS  Google Scholar 

  • Barbas, H. (2000). Connections underlying the synthesis of cognition, memory and emotion in primate prefrontal cortices. Brain Research Bulletin, 52, 319–330.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bartus R.T., & Levere, T.E. (1977). Frontal decortication in Rhesus monkeys: A test of the interference hypothesis. Brain Research, 119, 233–248.

    CrossRef  PubMed  CAS  Google Scholar 

  • Baudena, P., Halgren, E., Heit, G., & Clarke, J.M. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli: 3. Frontal cortex. Electroencephalography and Clinical Neurophysiology, 94, 251–264.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bechera, A., Damasio, H., & Damasio, A.R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.

    CrossRef  Google Scholar 

  • Botvinick, M., Nystrom, L.E., Fissell, K, Carter, C.S., & Cohen, J.D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179–181.

    CrossRef  PubMed  CAS  Google Scholar 

  • Brefczynski, I.A., & DeYoe, E.A. (1999). A physiological correlate of the’ spotlight’ of visual attention. Nature Neuroscience, 2, 370–374.

    CrossRef  PubMed  CAS  Google Scholar 

  • Büchel, C., & Friston, K. J. (1997). Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modeling and tMRI. Cerebral Cortex, 7, 768–778.

    CrossRef  PubMed  Google Scholar 

  • Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, RJ., & Reinoso-Suarez, F. (2000). The Anatomical connections of the Macaque monkey orbitofrontal cortex. A review. Cerebral Cortex, 10, 220–242.

    CrossRef  PubMed  CAS  Google Scholar 

  • Center for the Study of Emotion and Attention (CSEA-NIMH) (1999). The International affective picture system: Digitized photographs. Gainesville, Florida: Center for Research in Psychophysiology, University of Florida.

    Google Scholar 

  • Chao, L.L., & Knight, R.T. (1995). Human prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuro Report, 6, 1605–1610.

    CAS  Google Scholar 

  • Chao, L.L., & Knight, R.T. (1998). Contribution of human prefrontal cortex to delay performance. Journal of Cognitive Neuroscience, 10, 167–177.

    CrossRef  PubMed  CAS  Google Scholar 

  • Chawla, D., Rees, G., & Friston, K.J. (1999). The physiological basis of attentional modulation in extrastriate visual areas. Nature Neuroscience, 2, 671–676.

    CrossRef  PubMed  CAS  Google Scholar 

  • Clark, V.P., Fannon, S., Lai, S., Benson, R., & Bauer, L. (2000). Responses to rare visual target and distractor stimuli using fMRI. Journal of Neurophysiology, 83, 3133–3138.

    PubMed  CAS  Google Scholar 

  • Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proceedings of the National Academy of Sciences USA, 95, 831–838.

    CrossRef  CAS  Google Scholar 

  • Courchesne, E., Hillyard, S.A., & Galambos, R. (1975). Stimulus novelty, task relevance, and the visual evoked potential in man. Electroencephalography and Clinical Neurophysiology, 39, 131–143.

    CrossRef  PubMed  CAS  Google Scholar 

  • Daffner, K.R., Mesulam, M..M., Holcomb, PJ., Calvo, V., Acar, D., Chabrerie, A., Kikinis, R., Jolesz, F.A., Rentz, D.M., & Scinto L.F. (2000). Disruption of attention to novel events after frontal lobe injury in humans. Journal of Neurology, Neurosurgery and Psychiatry, 68. 18–24.

    CrossRef  CAS  Google Scholar 

  • Damasio A.R., (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, 351, 1413–1420.

    CrossRef  PubMed  CAS  Google Scholar 

  • D’Esposito, M., Detre, J.A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378, 279–281.

    CrossRef  PubMed  Google Scholar 

  • D’Esposito, M., & Postle, B.R. (1999a). The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia, 37, 1303–1315.

    CrossRef  PubMed  Google Scholar 

  • D’Esposito, M., Postle, B.R., Ballard, D., & Lease, J. (1999b). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain and Cognition, 41, 66–86.

    CrossRef  PubMed  Google Scholar 

  • D’Esposito, M., Postle, B.R., Jonides, J., & Smith, E.E. (1999c). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proceedings of the National Academy of Science USA, 96, 7514–7519.

    CrossRef  Google Scholar 

  • Dias, R., Robbins, T.W., & Roberts, A.C. (1996). Dissociation in prefrontal cortex of affective and attentional shifts. Nature, 380, 69–72.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dias, R., Robbins, T.W., & Roberts, A.C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from on-line processing. Neuroscience, 17, 9285–9297.

    PubMed  CAS  Google Scholar 

  • Dimitrov, M., Phipps, M., Zahn, T.P., & Grafman, J. (1999). A thoroughly modem Gage. Neurocase, 5, 345–354.

    Google Scholar 

  • Donchin, E., & Coles, M.G.H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–427.

    CrossRef  Google Scholar 

  • Downar, J., Crawley, A.P., Mikulis, DJ., & Davis, K.D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience, 3, 277–283.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dronkers, N.F., Redfern, B.B., & Knight, R. T. (2000). The neural architecture of language disorders. In M. Gazzaniga (Bd.), The new cognitive neurosciences. (pp, 949–958). MIT Press.

    Google Scholar 

  • Escera, C., Alho, K., Winkler, I., & Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10, 590–604.

    CrossRef  PubMed  CAS  Google Scholar 

  • Eslinger, P.J. (1999). Orbital frontal cortex: Historical and contemporary views about its behavioral and physiological significance. An introduction to special topic papers. Neurocase: Case studies in neuropsychology. neuropsychiatry, & behavioural neurology, 5, 225–229.

    Google Scholar 

  • Friedman D., Cycowicz Y.M., & Gaeta H. (2001). The Novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Behavioral Reviews, 25, 355–373.

    CrossRef  CAS  Google Scholar 

  • Fuster, J.M., Brodner, M., & Kroger, J.K. (2000). Cross-modal and cross-temporal associations in neurons of frontal cortex. Nature, 405, 347–351.

    CrossRef  PubMed  CAS  Google Scholar 

  • Gehring, W,J., & Knight, R.T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3, 516–520.

    CrossRef  PubMed  CAS  Google Scholar 

  • Gonzalez, C.M.G., Clark, V.P., Fan, S., Luck, S,J., & Hillyard, SA (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7, 41–51.

    CrossRef  Google Scholar 

  • Guillery, R.W., Feig, S.L., & Lozsádi, D.A. (1998). Paying attention to the thalamic reticular nucleus. Trends in Neurosciences, 21, 28–32.

    CrossRef  PubMed  CAS  Google Scholar 

  • Halgren, E., Baudena, P, Clarke, J.M., Heit, G., Liégeois, C., Chauvel, P., & Musolino, A. (1995a). Intracerebral potentials to rare target and distractor stimuli: 1. Superior temporal plane and parietal lobe. Electroencephalography and Clinical Neurophysiology, 94, 191–220.

    CrossRef  PubMed  CAS  Google Scholar 

  • Halgren, E., Baudena, P., Clarke, J.M., Heit, G., Marinkovic, K., Devaux, B., Vignal, @J.P., & Biraben, A. (1995b). Intracerebral potentials to rare target and distractor stimuli: 2. Medial, lateral and posterior temporal lobe. Electroencephalalography and Clinical Neurophysiology, 94, 229–250.

    CrossRef  CAS  Google Scholar 

  • Halgren, E., Marinkovic, K., & Chauvel, P. (1998). Generators of the late cognitive potential in auditory and visual oddball tasks. Electroencephalography and Clinical Neurophysiology, 106, 156–164.

    CrossRef  PubMed  CAS  Google Scholar 

  • Harlow, J.M. (1993). Recovery from the passage of an iron bar through the head. History of Psychiatry, 4, 271–281.

    CrossRef  Google Scholar 

  • Harrington, D.L., Haaland, K.Y., & Knight, R.T. (1998). Cortical networks underlying mechanisms of time perception. Journal of Neuroscience, 18, 1085–1095.

    PubMed  CAS  Google Scholar 

  • Hartikainen, K.M., Ogawa, K.H., & Knight, R.T. (2000a). Transient interference of right hemisphere function due to automatic emotional processing. Neuropsychologia, 38, 1576–1580.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hartikainen, K.M., Ogawa, K.H., Soltani, M., & Knight, R.T. (2000b). Altered emotional influence on visual attention subsequent to orbitofrontal damage in humans [Abstract]. Society for Neuroscience, 26, 2023.

    Google Scholar 

  • Hartikainen, K.M., Ogawa, K.H., Soltani, M., Pepitone, M., & Knight, R.T. (2001). Effects of emotional stimuli on event-related potentials and reaction times in orbitofrontal patients. Brain and Cognition. 47, 339–341.

    Google Scholar 

  • Heinze, H, J., Mangun, G.R., Burchert, W., Hinrichs, H., Scholz, M., Münte, T.F. Gös, A., Scherg, M., Johannes, S., Hundeshagen, H., Gazzanga, M.S., & Hillyard, SA (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543–546.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences USA, 95, 781–787.

    CrossRef  CAS  Google Scholar 

  • Hornak, J., Rolls, E.T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia, 34, 247–261

    CrossRef  PubMed  CAS  Google Scholar 

  • Hopfinger, J.P., Buonocore, M.H., & Mangun, G.R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291.

    CrossRef  PubMed  CAS  Google Scholar 

  • Jagust, W. (1999). Neuroimaging and the frontal lobes: Insights from the study of neurodegenerative diseases. In B.L. Miller & J.L. Cummings (Eds.), The human frontal lobes: functions and disorders. (pp. 107–122). New York: Guilford Press.

    Google Scholar 

  • Jonides, J., Smith, E.E., Koeppe, R.A., Awh, E., Minoshima, S., & Mintun, M.A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.

    CrossRef  PubMed  CAS  Google Scholar 

  • Jonides, J., Smith, E.E., Marshuetz, C., Koeppe, R.A., & Reuter-Lorenz, P.A. (1998). Inhibition of verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences USA, 95, 8410–8413.

    CrossRef  CAS  Google Scholar 

  • Kaipio, M.L., Alho K., Winkler I., Escera C., Surma-aho O., & Näätänen R. (1999). Event-related brain potentials reveal covert distractibility in closed head injuries. Neuro Report, 10, 2125–2129.

    CAS  Google Scholar 

  • Katayama J., & Polich J. (1998). Stimulus context determines P3a and P3b. Psychophysiology, 35, 23–33.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R., & Ungerleider, L.G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751–761.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kaufer D.I., & Lewis D.A. (1999). Frontal lobe anatomy and cortical connectivity. In B.L. Miller & J.L. Cummings (Eds.), The human frontal lobes: Functions and disorders. (pp. 27–44). New York: Guilford Press.

    Google Scholar 

  • Knight, R.T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography and Clinical Neurophysiology, 59, 9–20.

    CrossRef  PubMed  CAS  Google Scholar 

  • Knight, R.T. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383, 256–259.

    CrossRef  PubMed  CAS  Google Scholar 

  • Knight, R.T. (1997). Distributed cortical network for visual attention. Journal of Cognitive Neuroscience, 9, 75–91.

    CrossRef  Google Scholar 

  • Knight, R.T., D. Scabini, D.L. Woods, & Clayworth, C.C. (1989). Contribution of the temporal-parietal junction to the auditory P3. Brain Research, 502, 109–116.

    CrossRef  PubMed  CAS  Google Scholar 

  • Knight, R. T., Staines, W. R., Swick, D., & Chao, L.L. (1998). Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychologia, 101, 159–178.

    CrossRef  Google Scholar 

  • Knight, R.T., & Nakada, T. (1998). Cortico-limbic circuits and novelty: A review of EEG and blood flow data. Reviews in Neurosciences, 9, 57–70.

    CrossRef  CAS  Google Scholar 

  • Knight, R.T., & Scabini, D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. Journal of Clinical Neurophysiology, 15, 3–13.

    CrossRef  PubMed  CAS  Google Scholar 

  • Leduc, M., Herron, J.E., Greenberg, D.R., Eslinger, PJ., & Grattan, L.M. (1999). Impaired awareness of social and emotional competencies following orbital frontal lobe damage. Brain and Cognition, 40, 174–177.

    Google Scholar 

  • Levine, B., Freedman, M., Dawson, D., Black, S., & Stuss, D.T. (1999). Ventral frontal contribution to self-regulation: Convergence of episodic memory and inhibition. Neurocase, 5, 263–275.

    CrossRef  Google Scholar 

  • Linden, D.E.J., Prvulovic, D., Formisano, E., Vollinger, M., Zanella, F.E., Goebel, R., & Dierks, T. (1999). The functional neuroanatomy of target detection: An fMRI study of visual and auditory oddball tasks. Cerebral Cortex, 9, 815–823.

    CrossRef  PubMed  CAS  Google Scholar 

  • Macmillan M. (2000). An odd kind of fame: Stories of Phineas Gage. Cambridge, MA: MIT Press.

    Google Scholar 

  • Malmo, R.R. (1942). Interference factors in delayed response in monkeys after removal of frontal lobes. Journal of Neurophysiology, 5, 295–308.

    Google Scholar 

  • Mangun, G.R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32, 4–18.

    CrossRef  PubMed  CAS  Google Scholar 

  • Martinez, A., Anllo-Vento L., Sereno, M.I., Frank, L.R., Buxton, R.B., Dubowitz, DJ., Wong E.C., Hinrichs, H., Heinze, H.J., & Hillyard S.A. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364–369.

    CrossRef  PubMed  CAS  Google Scholar 

  • McCarthy, G., Luby, M., Gore, J, & Goldman-Rakic, P.S. (1997). Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. Journal of Neurophysiology, 77, 1630–1634.

    PubMed  CAS  Google Scholar 

  • McDonald, A.W., Cohen, J.D., Stenger, VA, & Carter, C.S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.

    CrossRef  Google Scholar 

  • McIntosh, A.R., Grady, C.L., Ungerleider, L.G., Haxby, J.V., Rapoport, S.I., & Horwitz, B. (1994). Network analysis of cortical visual pathways mapped with PET. Journal of Neuroscience, 14, 655–666.

    PubMed  CAS  Google Scholar 

  • McIntosh, A.R., Rajah, M.M., & Lobaugh, N.J. (1999). Interaction of prefrontal cortex in relation to awareness in sensory learning. Science, 284, 1531–1533.

    CrossRef  PubMed  CAS  Google Scholar 

  • Menon, K., Ford, J.M., Lim, K.O., Glover, G.H., & Pfefferbaurn, A. (1997). A combined event-related fMRI and EEG evidence for temporal-parietal activation during target detection. NeuroReport, 8, 3029–3037.

    CrossRef  PubMed  CAS  Google Scholar 

  • Mesulam, M.M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309–325.

    CrossRef  PubMed  CAS  Google Scholar 

  • Mesulam, M.M. (1986). Frontal cortex and behavior. Annals of Neurology, 19, 320–325.

    CrossRef  PubMed  CAS  Google Scholar 

  • Miller, B.L., Cummings, J.L., Villanueva-Meyer, J., Boone, K., Mehringer, C.M., Lesser, I.M., & Mena, I. (1991). Frontal lobe degeneration: Clinical, neuropsychological, and SPECT characteristics. Neurology, 41, 1374–1382.

    CrossRef  PubMed  CAS  Google Scholar 

  • Müller, N.G., Machado, L., & Knight, R.T. (2002). Contributions of subregions of the prefrontal cortex to working memory: evidence from brain lesions in humans. Journal of Cognitive Neuroscience, 14, 673–86.

    CrossRef  PubMed  Google Scholar 

  • Nielsen-Bohlman, L., & Knight, R.T. (1999). Prefrontal cortical involvement in visual working memory. Cognitive Brain Research, 8, 299–310.

    CrossRef  PubMed  CAS  Google Scholar 

  • Nies, J.K. (1999). Cognitive and social-emotional changes associated with mesial orbitofrontal damage: Assessment and implications for treatment. Neurocase, 5, 313–324.

    CrossRef  Google Scholar 

  • Näätänen, R. (1992). Attention and brain function. Hillsdale, N.J., Lawrence Erlbaum Associates.

    Google Scholar 

  • Opitz, B., Mecklinger, A., Friederici, A.D., & von Cramon, D.Y. (1999a). The functional neuroanatomy of novelty processing: Integrating ERP and fMRI results. Cerebral Cortex, 9, 379–391.

    CrossRef  PubMed  CAS  Google Scholar 

  • Opitz, B., Meclinger, A., von Cramon, D.Y., & Krugel, F. (1999b). Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology, 36, 142–147.

    CrossRef  PubMed  CAS  Google Scholar 

  • Owen, A.M., Stem, C.E., Look, R.B., Tracey, I., Rosen, B.R., & Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences USA, 95, 7721–7726.

    CrossRef  CAS  Google Scholar 

  • Paradiso, S., Chemenrinski., E., Yazici., K.M., Tartaro, M., Armando, R., & Robinson, S.G. (1999). Frontal lobe syndrome reassessed: Comparison of patients with lateral or medial frontal brain damage. Journal of Neurology, Neurosurgery and Psychiatry, 67, 664–667.

    CrossRef  CAS  Google Scholar 

  • Petersson, K.M., Elfgren, C., & Ingvar, M. (1999). Dynamic changes in the functional anatomy of the human brain during recall of abstract designs. Neuropsychologia, 37, 567–587.

    CrossRef  PubMed  CAS  Google Scholar 

  • Picton T.W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456–479.

    CrossRef  PubMed  CAS  Google Scholar 

  • Polich, J. (1998). P300 clinical utility and control of variability. Journal of Clinical Neurophysiology, 15, 14–33.

    CrossRef  PubMed  CAS  Google Scholar 

  • Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J.D. (2000). Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience, 3, 85–90.

    CrossRef  PubMed  CAS  Google Scholar 

  • Price, J.L. (1999). Networks within the orbital and medial prefrontal cortex. Neurocase, 5, 231–241.

    CrossRef  Google Scholar 

  • Raichle M.E., Fiez, J.A., Videen, T.O., MacLeod, A.M., Pardo, J.V., Fox, P.T., & Petersen, S.E. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4, 8–26.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rainer, G., Asaad, W.F., & Miller, E.K. (1998a). Memory fields of neurons in the primate prefrontal cortex. Proceedings of the National Academy of Sciences USA, 80, 15008–15013.

    CrossRef  Google Scholar 

  • Rainer, G., Asaad, W.F., & Miller, E.K. (1998b). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rees, G., Frackowiak, R., & Frith, C. (1997). Two modulatory effects of attention that mediate object categorization in human cortex. Science, 275, 835–838.

    CrossRef  PubMed  CAS  Google Scholar 

  • Roberts, A.C., & Wallis, J.D. (2000). Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cerebral Cortex, 10, 252–262.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rolls, E.T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rosen, H.J., Hartikainen, K.M., Jagust, W., Kramer, J., Cummings, J., Boone, K., Ellis, W., Miller, C., & Miller, B. (2002). Utility of clinical criteria in differentiating frontotemporal lobar degeneration from AD. Neurology, 58, 1608–16015.

    CrossRef  PubMed  Google Scholar 

  • Rossi, A.F., Rotter, P.S., Desimone, R., & Ungerleider, L.G. (1999) Prefrontal lesions produce impairments in feature-cued attention. Society of Neuroscience Abstract, 25, 3.

    Google Scholar 

  • Rule, R., Shimamura, A., & Knight, R.T. (in press). Orbitofrontal cortex and dynamic filtering of emotions. Cognitive, Affective and Behavioral Neuroscience.

    Google Scholar 

  • Rypma, B., & D’Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 3, 509–515.

    CrossRef  PubMed  CAS  Google Scholar 

  • Starn, C.J., Visser, S.L., Op de Coul, A.A., De Sonneville, L.M., Schellens, R.L., Brunia, C.H., de Smet, J.S., & Gielen, G. (1993). Disturbed frontal regulation of attention in Parkinson’s disease. Brain, 116, 1139–1158.

    CrossRef  Google Scholar 

  • Stem, C.E., Corkin S., Gonzalez, R.G., Guimares, A.R., Baker, J.R., Jennings, P.J., Carr, C.A., Sugiura, R.M., Vedantham, V., & Rosene, B.R. (1996). The hippocampal formation participates in novel picture encoding: Evidence from functional magnetic resonance imaging. Proceedings of the National Academy of Sciences USA, 93, 8660–8665.

    CrossRef  Google Scholar 

  • Stone, V.E., Baron-Cohen, S., & Knight, R.T. (1998). Does frontal lobe damage produce theory of mind impairment? Journal of Cognitive Neuroscience, 10, 640–656.

    CrossRef  PubMed  CAS  Google Scholar 

  • Stuss, D.T., Levine, B., Alexander, M.P., Hong, J., Palumbo, C., Hamer, L., Murphy, K.J., & Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388–402.

    CrossRef  PubMed  CAS  Google Scholar 

  • Swick, D. (1998). Effects of prefrontal lesions on lexical processing and repetition priming: An ERP study. Cognitive Brain Research, 7, 143–157.

    CrossRef  PubMed  CAS  Google Scholar 

  • Swick, D., & Knight, R.T. (1999). Contributions of prefrontal cortex to recognition memory: Electrophysiological and behavioral evidence. Neuropsychology, 13, 155–170.

    CrossRef  PubMed  CAS  Google Scholar 

  • Tulving, E., Markowitsch, H.J., Kapur, S., Habib, R., & Houle, S. (1994). Novelty encoding networks in the human brain: Positron emission tomography data. Neurolleport, 5, 2525–2528.

    CrossRef  CAS  Google Scholar 

  • Tulving, E., Markowitsch, H.J., Craik, F.I.M., Habib, R., & Houle, S. (1996). Novelty and familiarity activations in PET studies of memory encoding and retrieval. Cerebral Cortex, 6, 71–79.

    CrossRef  PubMed  CAS  Google Scholar 

  • Verleger, R., Heide, W., Butt, C., & Kompf, D. (1994). Reduction of P3b potentials in patients with temporo-parietal Iesions, Cognitive Brain Research, 2, 103–116.

    CrossRef  PubMed  CAS  Google Scholar 

  • Weinberger, D.R., Berman, K.F., & Zec, R.F. (1986) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry, 43, 114–124.

    CrossRef  PubMed  CAS  Google Scholar 

  • Weinberger, D.R., Berman, K.F., Suddath, R., & Torrey, E.F. (1992). Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. American Journal of Psychiatry, 149, 890–897.

    PubMed  CAS  Google Scholar 

  • Wilkins, A.J., Shallice, T., & McCarthy, G. (1987). Frontal lesions and sustained attention. Neuropsychologia, 25, 359–365.

    CrossRef  PubMed  CAS  Google Scholar 

  • Woods, D.L., & Knight, R.T. (1986). Electrophysiological evidence of increased distractibility after dorsolateral prefrontal lesions. Neurology, 36, 212–216.

    CrossRef  PubMed  CAS  Google Scholar 

  • Yamaguchi, S., & Knight, R.T. (1991). Anterior and posterior association cortex contributions to the somatosensory P300. Journal of Neuroscience, 11, 2039–2054.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, S., & Knight, R.T. (1992). Effects of temporal-parietal lesions on the somatosensory P3 to lower limb stimulation. Electroencephalography and Clinical Neurophysiology, 84, 139–148.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hartikainen, K.M., Knight, R.T. (2003). Lateral and Orbital Prefrontal Cortex Contributions to Attention. In: Polich, J. (eds) Detection of Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0294-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0294-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5008-8

  • Online ISBN: 978-1-4615-0294-4

  • eBook Packages: Springer Book Archive