Skip to main content

Event-Related Brain Potential Indices of Involuntary Attention to Auditory Stimulus Changes

  • Chapter
Detection of Change

Abstract

As first reported by (Näätänen, Gaillard, and Mäntysalo 1978, 1980), infrequent (“deviant”) sounds occurring in a sequence of repetitive (“standard”) sounds elicit the mismatch negativity (MMN) event-related brain potential (ERP), even when the listener is instructed to attend to other stimuli. MMN is seen as a negative-polarity displacement of the ERP to deviant sounds in relation to the ERP from standard sounds around 100–200 milliseconds from deviant-event onset (see Figure 1). As in the early reports of Näätänen and his colleagues, most subsequent MMN studies have applied tones as stimuli and deviancies in some simple feature (e.g., pitch, intensity, duration, or location) to elicit MMN (for a review, see Näätänen, 1992). However, MMN is also elicited by infrequent changes and irregularities in complex sounds, such as phonemes, syllables, chords, and tone patterns (for recent reviews, see Näätänen & Alho, 1997; Näätänen & Winkler, 1999; Schröger, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaltonen, O., Tuomainen, J., Laine, M., & Niemi, P. (1993). Cortical differences in tonal versus vowel processing as revealed by an ERP component called mismatch negativity (MMN). Brain and Language, 44, 139–152.

    Article  PubMed  CAS  Google Scholar 

  • Alho, K., Pesonaen, H., Keltikangas-Järvinen, L., Ravaja, N., Escera, C., Winkler, I., & Näätänen, R. (1999). Involuntary processing of novel sounds in individuals with high and low scores on the novelty-seeking temperament scale. Psychophysiology, 36. S24.

    Google Scholar 

  • Alho, K., Winkler, I., Escera, C; Huotilainen, M., Virtanen, J., Jääskeläinen, I.P., Pekkonen, E., & Ilmoniemi, R.J. (1998). Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. Psychophysiology, 35. 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Alho, K., Woods, D.L., Algazi, A., & Näätänen, R. (1992). Intermodal selective attention II: Effects of attentional load on processing of auditory and visual stimuli in central space. Electroencephalography and Clinical Neurophysiology. 82,356–368.

    Article  PubMed  CAS  Google Scholar 

  • Ahveninen, J., Jääskeläinen, I.P., Pekkonen, E., Hallberg, A., Hietanen, M., Näätänen, R., Schröger, E., & Sillanaukee, P. (2000). Increased distractibility by task-irrelevant sound changes in abstinent alcoholics. Alcoholism: Clinical and Experimental Research, 24, 1850–1854.

    Article  CAS  Google Scholar 

  • Alain, C., Richer, F., Achim, A., & Saint-Hilaire, J.M. (1989). Human intracerebral potentials associated with target, novel and omitted auditory stimuli. Brain Topography, 1. 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Alain, C., Woods, D.L., & Knight, R.T. (1998). A distributed cortical network for auditory sensory memory in humans. Brain Research. 812. 23–37.

    Article  PubMed  CAS  Google Scholar 

  • Alho, K., Escera, C., Díaz, R., Yago, E., & Serra, J.M. (1997). Effects of involuntary auditory attention on visual task performance and brain activity. Neuroreport, 8. 3233–3237.

    Article  PubMed  CAS  Google Scholar 

  • Alho, K., Pesonen, H., Keltikangas-Järvinen, L., Ravaja, N., Escera, C., Winkler, I., & Näätänen, R. (1999). Involuntary processing of novel sounds in individuals with high and low scores on the novelty-seeking temperament scale[Abstract]. Psychophysiology. 36, S24.

    Google Scholar 

  • Baudena, P., Halgren, E., Heit, G., & Clarke, J.M. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli. III Frontal cortex. Electroencephalography and Clinical Neurophysiology, 94, 251–264.

    Article  PubMed  CAS  Google Scholar 

  • Berti, S., & Schröger, E. (2001). A comparison of auditory and visual distraction effects: Behavioral and event-related indices. Cognitive Brain Research, 11, 265–273.

    Article  Google Scholar 

  • Celsis, P., Boulanouar, K., Doyon, B., Ranjeva, J.P., Berry, I., Nespoulous, J.L., & Chollet, F. (1999). Differential tMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrusto habituation and change detection in syllables and tones. Neuroimage, 9, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, N., Winkler, I., Teder, W., & Näätänen R. (1993). Memory prerequisites of the mismatch negativity in the auditory event-related potential (ERP). Journal of Experimental Psychology: Learning, Memory and Cognition, 19, 909–921.

    Article  CAS  Google Scholar 

  • Csépe, V., Karmos, G., & Molnár, M. (1987). Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat-animal model of mismatch negativity. Electroencephalography and Clinical Neurophysiology, 66, 571–578.

    Article  PubMed  Google Scholar 

  • Deouell, L., Bentin, S., & Giard, M.-H.(1998). Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. Psychophysiology, 35, 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Donchin, E., & Coles, M.G.H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–374.

    Article  Google Scholar 

  • Escera, C, Alho, K., Winkler, I., & Näätänen R. (1998). Neural mechanisms of involuntary attention switching to novelty and change in the acoustic environment. Journal of Cognitive Neuroscience, 10, 590–604.

    Article  PubMed  CAS  Google Scholar 

  • Escera, C., Yago, E., & Alho, K. (2001). Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. European Journal of Neuroscience, 14, 877–883.

    Article  PubMed  CAS  Google Scholar 

  • Escera, C., Corral, M.J., & Yago, E. An electrophysiological and behavioral investigation of involuntary attention towards auditory frequency, duration and intensity changes. Cognitive Brain Research, in press.

    Google Scholar 

  • Ford, J.M., Roth, W.T., & Kopell, B.S. (1976). Auditory evoked potentials to unpredictable shifts in pitch. Psychophysiology, 13, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, J. (1989). The prefrontal cortex: Anatomy. physiology, and neuropsychology of the frontal lobe. New York: Raven.

    Google Scholar 

  • Giard, M.H., Perrin, F., Echallier, J.F., Thévenet, M., Froment, J.C., & Pernier J. (1994). Dissociation of temporal and frontal components in the auditory N1 wave: A scalp current density and dipole model analysis. Electroencephalography and Clinical Neurophysiology, 92, 238–252.

    Article  PubMed  CAS  Google Scholar 

  • Giard, M.H., Lavikainen, J., Reinikainen, K., Perrin, F., Bertrand, O., Thévenet, M., Pernier, J., & Näätänen R. (1995). Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory. Journal of Cognitive Neuroscience, 7, 133–143.

    Article  Google Scholar 

  • Giard, M.H., Perrin, F., Pernier, J., & Bouchet P. (1990). Brain generators implicated in processing of auditory stimulus deviance: A topographic event-related potential study. Psychophysiology, 27, 627–640.

    Article  PubMed  CAS  Google Scholar 

  • Halgren, E., Baudena, P., Clarke, J.M., Heit, G., Liegeois, C., Chauvel, P., & Musolino, A. (1995a). Intracerebral potentials to rare target and distractor auditory and visual stimuli: I. Superior temporal plane and parietal lobe. Electroencephalography and Clinical Neurophysiology, 94, 191–220.

    Article  PubMed  CAS  Google Scholar 

  • Halgren, E., Baudena, P., Clarke, J.M., Heit, G., Marinkovic, K., Devaux, B., Vignal, J.P., & Biraben, A. (1995b). Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral, and posterior temporal lobe. Electroencephalography and Clinical Neurophysiology, 94, 229–250.

    Article  PubMed  CAS  Google Scholar 

  • Hari, R., Hämäläinen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., Alho, K., Näätänen, R., & Sams, M. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man. Neuroscience Letters, 50, 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Hari, R., Kaila, K., Katila, T., Tuomisto, T., & Varpula, T. (1982). Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: Implications for their neural generation. Electroencephalography and Clinical Neurophysiology, 54, 561–569.

    Article  PubMed  CAS  Google Scholar 

  • Jääskeäinen, I.P., Alho, K., Escera, C, Winkler, I., Sillanaukee, P., & Näätänen, R. (1996). Effects of ethanol and auditory distraction on forced choice reaction time. Alcohol, 13, 153–156.

    Article  Google Scholar 

  • Jääskeläinen, I.P., Schroger, E., & Näätänen, R. (1999). Effects of ethanol on auditory distraction: An ERP and behavioral study. Psychopharmacology, 141, 16–21.

    Article  PubMed  Google Scholar 

  • Javitt, D.C., Steinschneider, M., Schroeder, C.E., & Arezzo, J.C. (1996). Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proceedings of the National Academy of Sciences USA, 93. 11962–11967.

    Article  CAS  Google Scholar 

  • Kaipio, M.L., Escera, C; Winkler, I., Surma-aho, O., & Alho, K. Attention impairment in closed-head injury as revealed by event-related potentials. In preparation.

    Google Scholar 

  • Knight, R.T. (1984). Decreased response to novel stimuli after prefrontal lesion in man. Electroencephalography and Clinical Neurophysiology. 59, 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Knight, R.T. (1991). Evoked potential studies of attention capacity in human frontal lobe lesions. In H. Levin, H. H. Eisenberg, & F. Benton (Eds.), Frontal lobe function and dysfunction (pp. 139–153). Oxford: Oxford University Press.

    Google Scholar 

  • Knight, R.T. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383, 256–259.

    Article  PubMed  CAS  Google Scholar 

  • Knight, R.T., Scabini, D., Woods, D.L., & Clayworth, C. (1989). Contributions of temporal-parietal junction to the human auditory P3. Brain Research, 502, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Knight, R.T., & Scabini, D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. Journal of Clinical Neurophysiology, 15, 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Korzyukov, O., Alho, K., Kujala, A., Gumenyuk, V., Ilmoniemi, R.J., Virtanen, J., Kropotov, J., & Näätänen, R. (1999). Electromagnetic responses of the human auditory cortex generated by sensory-memory based processing of tone-frequency changes. Neuroscience Letters, 276, 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, N., McGee, T., Carrell, T., King, C., Littman, T., & Nicol, T. (1994). Discrimination of speech-like contrasts in the auditory thalamus and cortex. Journal of the Acoustical Society of America. 96. 2758–2768.

    Article  PubMed  CAS  Google Scholar 

  • Kropotov, J.D., Näätänen, R., Sevostianov, A.V., Alho, K., Reinikainen, K., & Kropotova, O.V. (1995). Mismatch negativity to auditory stimulus change recorded directly from the human temporal cortex. Psychophysiology, 32, 418–422.

    Article  PubMed  CAS  Google Scholar 

  • Kropotov, J.D., Alho, K., Näätänen, R., Ponornarev, V.A., Kropotova, O.V., Anichkov, A.D., & Nechaev, V.B. (2000). Human auditory-cortex mechanisms of preattentive sound discrimination. Neuroscience Letters. 280. 87–90

    Article  PubMed  CAS  Google Scholar 

  • Levänen, S., Ahonen, A., Hari, R., McEvoy, L., & Sams, M. (1996). Deviant auditory stimuli activate human left and right auditory cortex differently. Cerebral Cortex, 6. 288–296.

    Article  PubMed  Google Scholar 

  • Liasis, A., Towell, A., & Boyd, S. (1999). Intracranial auditory detection and discrimination potentials as substrates of echoic memory in children. Cognitive Brain Research. 7. 503–506.

    Article  PubMed  CAS  Google Scholar 

  • Lyytinen, H., Blomberg, A.P., & Näätänen, R. (1992). Event-related potentials and autonomic responses to a change in unattended auditory stimuli. Psychophysiology. 29. 523–534.

    Article  PubMed  CAS  Google Scholar 

  • Mangun, G.R., & Hillyard, S.A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception and Performance. 17. 1057–1074.

    Article  PubMed  CAS  Google Scholar 

  • Mecklinger A., & Ullsperger P. (1995). The P300 to novel and target events: A spatio-temporal dipole model analys is. Neuroreport, 7. 241–245.

    PubMed  CAS  Google Scholar 

  • Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13. 201–288.

    Article  Google Scholar 

  • Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Näätänen, R. (1995). The mismatch negativity: A powerful tool for cognitive neuroscience. Ear and Hearing. 16. 6–18.

    Article  PubMed  Google Scholar 

  • Näätänen, R., & Alho K. (1997). Mismatch negativity (MMN): The measure for central sound representation accuracy. Audiology and Neuro-Otology, 2. 341–353.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Gaillard, A.W.K., & Mäntysalo, S. (1978). Early selective attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Gaillard, A.W.K., & Mantysalo, S. (1980). Brain potential correlates of voluntary and involuntary attention. In H. H. Kornhuber, & L. Deecke (Eds.), Motivation, motor and sensory processes of the brain: Electrical potentials. behavior and clinical use. Progress in brain research, Vol. 54 (pp. 343–348). Amsterdam: Elsevier.

    Google Scholar 

  • Näätänen, R., & Michie, P.T. (1979). Early selective attention effects on the evoked potential. A critical review and reinterpretation. Biological Psychology. 8, 81–136.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Paavilainen, P., Alho, K., Reinikainen, K., & Sams, M. (1989). Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain? Neuroscience Letters. 98. 217–221.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Paavilainen, P., Tiitinen, H., Jiang, D., & Alho, K. (1993). Attention and mismatch negativity. Psychophysiology. 30. 436–450.

    Article  PubMed  Google Scholar 

  • Näätänen, R., & Picton, TW. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology. 24. 375–425.

    Article  PubMed  Google Scholar 

  • Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in neuroscience. Psychological Bulletin. 125. 826–859.

    Article  PubMed  Google Scholar 

  • Öhman, A. (1979). The orienting response, attention, and learning: An information-processing perspective. In H.D. Kimmel, H.E. van Olst, & J.F. Orlebeke, J.F. (Eds.), The orienting response in humans (pp. 443–471). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Opitz, B., Mecklinger, A., Von Cramon, D.Y., & Kruggel, F. (1999). Combined electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology. 36. 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Opitz, B., Rinne, T., Mecklinger, A., von Cramon, D.Y., & Schröger, E. (2002). Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. NeuroImage, 15, 165–174.

    Article  Google Scholar 

  • Polo, M.D., Yago, E., Grau, C., Alho, K., Gual, A., & Escera, C. (1998). Involuntary attentional processing in chronic alcoholism. In M. Tervaniemi, & C. Escera (Eds.), Abstracts of the first international workshop on mismatch negativity and its clinical applications (p. 88). Helsinki: Multiprint-University of Helsinki.

    Google Scholar 

  • Polo, M.D., Yago, E., Gual, A., Grau, C., Alho, K., & Escera, C. (1999). Abnormal activation of cerebral networks of orienting to novelty in chronic alcoholics. Psychophysiology. 36. S90.

    Google Scholar 

  • Rinne, T., Alho, K., Alku, P., Holi, M., Sinkkonen, J., Virtanen, J., Bertrand, O., & Näätänen, R. (1999a). Analysis of speech sounds is left-hemisphere predominant at 100–150 ms after sound onset. Neuroreport, 10. 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  • Rinne, T., Alho, K., Ilmoniemi, R.J., Virtanen, J., & Näätänen, R. (2000). Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage, 12. 14–19.

    Article  PubMed  CAS  Google Scholar 

  • Rinne, T., Gratton, G., Fabiani, M., Cowan, N., Maclin, E., Stinard, A., Sinkkonen, J., Alho, K., & Näätänen, R. (1999). Scalp-recorded optical signals make sound processing in the auditory cortex visible. Neuroimage, 10. 620–624.

    Article  PubMed  CAS  Google Scholar 

  • Ritter, W., Deacon, D., Gomes, H., Javitt, D.C., & Vaughan, H.G., Jr. (1995). The mismatch negativity of event-related potentials as a probe of transient auditory memory: A review. Ear and Hearing. 16. 52–67.

    Article  PubMed  CAS  Google Scholar 

  • Sarns, M., Paavilainen, P., Alho, K., & Näätänen, R. (1985). Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology. 62, 437–448.

    Article  Google Scholar 

  • Scherg, M., Vajsar, J., & Picton, T. (1989). A source analysis of the human auditory evoked potentials. Journal of Cognitive Neuroscience. 1. 336–355.

    Article  Google Scholar 

  • Schröger, E. (1996). A neural mechanism for involuntary attention shifts to changes in auditory stimulation. Journal of Cognitive Neuroscience. 8. 527–539.

    Article  Google Scholar 

  • Schröger, E. (1997). On the detection of auditory deviants: A pre-attentive activation model. Psychophysiology, 34, 245–257.

    Article  PubMed  Google Scholar 

  • Schröger, E., & Berti, S. (2000). Distracting working memory by automatic deviance-detection in audition and vision. In E. Schröger, A. Mecklinger, & A.D. Friederici (Eds.), Working on working memory (pp. 1–25). Leipzig: Leipzig University Press.

    Google Scholar 

  • Schröger, E., Giard, M.H., & Wolff, C. (2000). Auditory distraction: Event-related potential and behavioral indices of auditory distraction. Clinical Neurophysiology, 111. 1450–1460.

    Article  PubMed  Google Scholar 

  • Schröger, E., & Wolff, C. (1998a). Attentional orienting and reorienting is indicated by human event-related brain potentials. Neuroreport, 9. 3355–3358.

    Article  PubMed  Google Scholar 

  • Schröger, E., & Wolff, C. (1998b). Behavioral and electrophysiological effects of task-irrelevant sound change: A new distraction paradigm. Cognitive Brain Research. 7. 71–87.

    Article  PubMed  Google Scholar 

  • Schröger, E., & Wolff, C. Auditory distraction as a function of the discrepancy of the distractor. In preparation.

    Google Scholar 

  • Serra, J.M., Giard, M.H., Yago, E., Alho, K., & Escera, C. (1998). Bilateral contribution from frontal lobes to MMN. International Journal of Psychophysiology. 30. 236–237.

    Article  Google Scholar 

  • Sokolov, E.N. (1975). The neuronal mechanisms of the orienting reflex. In E.N. Sokolov & O.S. Vinogradova (Eds.), Neuronal mechanisms of the orienting reflex (pp. 217–338). Hillsdale, NJ: John Wiley.

    Google Scholar 

  • Squires, K.C., Squires, N.K., & Hillyard, S.A. (1975). Decision-related cortical potentials during an auditory signal detection task with cued observation intervals. Journal of Experimental Psychology: Human Perception and Performance. 1. 268–279.

    Article  PubMed  CAS  Google Scholar 

  • Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press.

    Google Scholar 

  • Sutton, S., Braren, M., Zubin, J., & John, E.R. (1965). Evoked-potential correlates of stimulus uncertainty. Science. 150. 1187–1188.

    Article  PubMed  CAS  Google Scholar 

  • Tervaniemi, M., Medvedev, S.V., Alho, K., Pakhomov, S.V., Roudas, M.S., van Zuijen, T.L., & Näätänen, R. (2000). Lateralized automatic auditory processing of phonetic versus musical information: A PET study. Human Brain Mapping. 10. 74–79.

    Article  PubMed  CAS  Google Scholar 

  • Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature. 372. 90–92.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, I., & Czigler, I. (1998). Mismatch negativity: Deviance detector or the maintenance of the “standard.” Neuroreport, 9. 3809–3813.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, I., Karmos, G., & Näätänen, R. (1996), Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Research. 742. 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Woods, D.L. (1990). The physiological basis of selective attention: Implications of event-related potential studies. In J.W. Rohrbaugh, R. Parasuraman, & R. Johnson, Jr. (Eds.), Event-related potentials: Basic issues and applications (pp. 178–209). New York: Oxford University Press.

    Google Scholar 

  • Woods, D.L. (1992). Auditory selective attention in middle-aged and elderly subjects: An event-related brain potential study. Electroencephalography and Clinical Neurophysiology. 84. 456–468.

    Article  PubMed  CAS  Google Scholar 

  • Woods, D.L., Knight, R.T., & Scabini, D. (1993). Anatomical substrates of auditory selective attention: Behavioral and electrophysiological effects of posterior association cortex lesions. Cognitive Brain Research. 1. 227–240.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, S., & Knight, R.T. (1991). Anterior and posterior association cortex contributions to the somatosensory P300. Journal of Neuroscience. 11. 2039–2054.

    PubMed  CAS  Google Scholar 

  • Yago, E., Escera, C., Alho, K., & Giard, M.H. (2001). Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport, 12, 2583–2587.

    Article  PubMed  CAS  Google Scholar 

  • Yago, E., Escera, C., Alho, K., Giard, M.H., & Serra-Grabulosa, J.M. Spatiotemporal dynamics of the auditory novelty-P3 event-related brain potential. Cognitive Brain Research. Submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alho, K., Escera, C., Schröger, E. (2003). Event-Related Brain Potential Indices of Involuntary Attention to Auditory Stimulus Changes. In: Polich, J. (eds) Detection of Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0294-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0294-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5008-8

  • Online ISBN: 978-1-4615-0294-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics