Advertisement

Sensitizing Calcium-Induced Calcium Release

Role of cADPR as an Endogenous Modulator
Chapter

Abstract

The primary mechanism by which cells effect rapid increases in their intracellular Ca2+ concentration ([Ca2+ ]i) is by the opening (gating) of specific channels which facilitate the passage of Ca2+ across a membrane down the electrochemical gradient generated by various pumps and/or exchangers. Whether at the plasma membrane or on intracellular organelles (e.g. endoplasmic reticulum (ER), mitochondria, Golgi), such channels have to be tightly controlled to prevent deleterious or inappropriate elevations of the [Ca2+ ]i. Therefore, cells have developed a seemingly varied repertoire for their discrete regulation. However, this apparent complexity belies the fact that activation, in essence, encompasses only three modes of operation: (a) ligand-gated ion channels (b) voltage-gated ion channels (c) channels regulated by protein-protein interactions.

Keywords

Release Channel Ryanodine Receptor Pancreatic Acinar Cell Nicotinic Acid Adenine Dinucleotide Phosphate Ryanodine Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewis RS. 2001. Calcium Signaling Mechanisms in T Lymphocytes. Annu. Rev. Immunol. 19:497–521.PubMedCrossRefGoogle Scholar
  2. 2.
    Taylor CW. 1998. Inositol trisphosphate receptors: Ca2+ -modulated intracellular Ca2+ channels. Biochim. Biophys. Acta 1436: 19–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Patel S, Churchill GC and Galione A. 2001. Coordination of Ca2+ signalling by NAADP. Trends Biochem. Sci. 26: 482–489.CrossRefGoogle Scholar
  4. 4.
    Ford LE and Podolsky RJ. 1970. Regenerative calcium release within muscle cells. Science 167:58–59.PubMedCrossRefGoogle Scholar
  5. 5.
    Endo M, Tanaka M and Ogawa Y. 1970. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228: 34–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Fabiato A and Fabiato F. 1975. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. 249: 469–495.PubMedGoogle Scholar
  7. 7.
    Fabiato A. 1981. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J. Gen. Physiol. 78: 457–497.PubMedCrossRefGoogle Scholar
  8. 8.
    Fabiato A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245: C1–C14.PubMedGoogle Scholar
  9. 9.
    Niggli E. 1999. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu. Rev. Physiol. 61:311–335.PubMedCrossRefGoogle Scholar
  10. 10.
    Ridgway EB, Gilkey JC and Jaffe LF. 1977. Free calcium increases explosively in activating medaka eggs. Proc. Natl. Acad. Sci. USA 74: 623–627.PubMedCrossRefGoogle Scholar
  11. 11.
    Allbritton NL, Meyer T and Stryer L. 1992. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258: 1812–1815.PubMedCrossRefGoogle Scholar
  12. 12.
    Sutko JL. Airey J A, Welch W and Ruest L. 1997. The pharmacology of ryanodine and related compounds. Pharmacol. Rev. 49: 53–98.PubMedGoogle Scholar
  13. 13.
    Lai FA, Erickson HP, Rousseau E, Liu QY and Meissner G. 1988. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331: 315–319.PubMedCrossRefGoogle Scholar
  14. 14.
    Imagawa T, Smith JS, Coronado R and Campbell KP. 1987. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ -permeable pore of the calcium release channel. J. Biol. Chem. 262: 16636–16643.PubMedGoogle Scholar
  15. 15.
    Inui M, Saito A and Fleischer S. 1987. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262: 1740–1747.PubMedGoogle Scholar
  16. 16.
    Inui M, Saito A and Fleischer S. 1987. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J. Biol. Chem. 262: 15637–15642.PubMedGoogle Scholar
  17. 17.
    Wagenknecht T and Radermacher M. 1997. Ryanodine receptors: structure and macromolecular interactions. Curr. Opin. Struct. Biol. 7: 258–265PubMedCrossRefGoogle Scholar
  18. 18.
    Sharma MR, Penczek P, Grassucci R, Xin HB, Fleischer S and Wagenknecht T. 1998. Cryoelectron microscopy and image analysis of the cardiac ryanodine receptor. J. Biol. Chem. 273: 18429–18434.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu Z, Zhang J, Sharma MR, Li P, Chen SR and Wagenknecht T. 2001. Three-dimensional reconstruction of the recombinant type 3 ryanodine receptor and localization of its amino terminus. Proc. Natl. Acad. Sci. USA 98: 6104–6109.PubMedCrossRefGoogle Scholar
  20. 20.
    Felder E and Franzini-Armstrong C. 2002. Type 3 ryanodine receptors of skeletal muscle are segregated in aparajunctional position. Proc. Natl. Acad. Sci. USA 99: 1695–1700.PubMedCrossRefGoogle Scholar
  21. 21.
    Sutko JL and Airey J A. 1996. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol. Rev. 76: 1027–1071.PubMedGoogle Scholar
  22. 22.
    Shoshan-Barmatz V and Ashley RH. 1998. The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int. Rev. Cytol. 183: 185–270.PubMedCrossRefGoogle Scholar
  23. 23.
    Ogawa Y. Kurebayashi N and Murayama T. 1999. Ryanodine receptor isoforms in excitation-contraction coupling. Adv. Biophys. 36: 27–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Meissner G. 1994. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu. Rev. Physiol. 56: 485–508.PubMedCrossRefGoogle Scholar
  25. 25.
    Hasan G and Rosbash M. 1992. Drosophila homologs of two mammalian intracellular Ca2+ -release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116: 967–975.PubMedGoogle Scholar
  26. 26.
    Sakube Y, Ando H and Kagawa H. 1993. Cloning and mapping of a ryanodine receptor homolog gene of Caenorhabditis elegans. Ann. NY Acad. Sci. 707: 540–545.PubMedCrossRefGoogle Scholar
  27. 27.
    Shiwa M, Murayama T and Ogawa Y. 2002. Molecular cloning and characterization of ryanodine receptor from unfertilized sea urchin eggs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282: R727–R737.PubMedGoogle Scholar
  28. 28.
    Lee HC. 2001. Physiological Functions of Cyclic ADP-Ribose and NAADP as calcium messengers. Annu. Rev. Pharmacol. Toxicol. 41: 317–345.PubMedCrossRefGoogle Scholar
  29. 29.
    Clapper DL, Walseth TF, Dargie PJ and Lee HC. 1987. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262: 9561–9568.PubMedGoogle Scholar
  30. 30.
    Galione A, Lee HC and Busa WB. 1991. Ca2+ -induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253: 1143–1146.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee HC. 1993. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J. Biol. Chem. 268: 293–299.PubMedGoogle Scholar
  32. 32.
    Lee HC, Aarhus R and Graeff RM. 1995. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J. Biol. Chem. 270: 9060–9066.PubMedCrossRefGoogle Scholar
  33. 33.
    Graeff RM, Podein RJ, Aarhus R and Lee HC. 1995. Magnesium ions but not ATP inhibit cyclic ADP-ribose-induced calcium release. Biochem. Biophys. Res. Commun. 206:786–791.PubMedCrossRefGoogle Scholar
  34. 34.
    Koshiyama H, Lee HC and Tashjian AH. 1991. Novel mechanism of intracellular calcium release in pituitary cells. J. Biol. Chem. 266: 16985–16988.PubMedGoogle Scholar
  35. 35.
    White AM, Watson SP and Galione A. 1993. Cyclic ADP-ribose-induced Ca2+ release from rat brain microsomes. FEBS Lett 318: 259–263.PubMedCrossRefGoogle Scholar
  36. 36.
    Galione A, Cancela J-M, Churchill G, Genazzani A, Lad C, et al. 2000. Methods in cADPR and NAADP research. In Methods in Calcium Signalling, ed. JJ Putney, pp. 249–296. Boca Raton: CRC PressGoogle Scholar
  37. 37.
    Churchill GC and Galione A. 2001. Prolonged inactivation of NAADP-induced Ca2+ release mediates a spatiotemporal Ca2+ memory. J. Biol. Chem. 276: 11223–11225.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim H, Jacobson EL and Jacobson MK. 1993. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science 261: 1330–1333.PubMedCrossRefGoogle Scholar
  39. 39.
    Migaud ME, Pederick RL, Bailey VC and Potter BV. 1999. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors. Biochemistry 38: 9105–9114.PubMedCrossRefGoogle Scholar
  40. 40.
    Sauve AA, Deng H-T, Angeletti RH and Schramm VL. 2000. A Covalent Intermediate in CD38 Is Responsible for ADP-ribosylation and Cyclization Reactions. J. Am. Chem. Soc. 122:7855–7859.CrossRefGoogle Scholar
  41. 41.
    Walseth TF and Lee HC. 1993. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim. Biophys. Acta 1178: 235–242.PubMedCrossRefGoogle Scholar
  42. 42.
    Sethi JK, Empson RM, Bailey VC, Potter BV and Galione A. 1997. 7-Deaza-8-bromo-cyclic ADP-ribose, the first membrane-permeant, hydrolysis-resistant cyclic ADP-ribose antagonist. J. Biol. Chem. 272: 16358–16363.PubMedCrossRefGoogle Scholar
  43. 43.
    Bailey VC, Sethi JK, Fortt SM, Galione A and Potter BVL. 1997. 7-Deaza cyclic adenosine 5'-diphosphate ribose: First example of a Ca2+ -mobilizing partial agonist related to cyclic adenosine 5'- diphosphate ribose. Chem. Biol. 4: 51–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Cui Y, Galione A and Terrar DA. 1999. Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochem. J. 342: 269–273.PubMedCrossRefGoogle Scholar
  45. 45.
    Lukyanenko V and Gyorke S. 1999. Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes. J. Physiol. (Lond) 521: 575–585.CrossRefGoogle Scholar
  46. 46.
    Cancela JM, Van Coppenolle F, Galione A, Tepikin AV and Petersen OH. 2002. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J. 21: 909–919.PubMedCrossRefGoogle Scholar
  47. 47.
    Thorn P, Gerasimenko O and Petersen OH. 1994. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells. EMBO J. 13:2038–2043.PubMedGoogle Scholar
  48. 48.
    Burdakov D, Cancela JM and Petersen OH. 2001. Bombesin-induced cytosolic Ca2+ spiking in pancreatic acinar cells depends on cyclic ADP-ribose and ryanodine receptors. Cell Calcium 29: 211 –216.PubMedCrossRefGoogle Scholar
  49. 49.
    Cancela JM. 2001. Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR, and IP3. Annu. Rev. Physiol. 63: 99–117.PubMedCrossRefGoogle Scholar
  50. 50.
    Churchill GC and Galione A. 2001. NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J. 20: 2666–2671.PubMedCrossRefGoogle Scholar
  51. 51.
    Currie KP, Swann K, Galione A and Scott RH. 1992. Activation of Ca2+ -dependent currents in cultured rat dorsal root ganglion neurones by a sperm factor and cyclic ADP-ribose. Mol. Biol. Cell 3: 1415–1425.PubMedGoogle Scholar
  52. 52.
    Prakash YS, Kannan MS, Walseth TF and Sieck GC. 1998. Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am. J. Physiol. 274: C1653–C1660.PubMedGoogle Scholar
  53. 53.
    Rakovic S, Cui Y, Iino S, Galione A, Ashamu GA, et al. 1999. An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J. Biol. Chem. 274: 17820–17827.PubMedCrossRefGoogle Scholar
  54. 54.
    Prakash YS, Kannan MS, Walseth TF and Sieck GC. 2000. cADP ribose and [Ca2+ ]i regulation in rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 279: H1482–H1489.PubMedGoogle Scholar
  55. 55.
    Leite MF, Burgstahler AD and Nathanson MH. 2002. Ca2+ Waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini. Gastroenterology 122: 415–427.PubMedCrossRefGoogle Scholar
  56. 56.
    Willmott N, Sethi J, Walseth TF, Lee HC, White AM and Galione A. 1996. Nitric oxide induced mobilization of intracellular calcium via the cyclic ADP-ribose signalling pathway. J. Biol. Chem. 271: 3699–3705.PubMedCrossRefGoogle Scholar
  57. 57.
    Fluck R, Abraham V, Miller A and Galione A. 1999. Microinjection of cyclic ADP-ribose triggers a regenerative wave of Ca2+ release and exocytosis of cortical alveoli in medaka eggs. Zygote 7: 285–292.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee HC. Aarhus R and Walseth TF. 1993. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261: 352–355.PubMedCrossRefGoogle Scholar
  59. 59.
    Polzonetti V, Cardinali M, Mosconi G, Natalini P, Meiri I and Carnevali O. 2002. Cyclic ADPR and calcium signaling in sea bream (Spams aurata) egg fertilization. Mol. Reprod. Dev. 61:213–217.PubMedCrossRefGoogle Scholar
  60. 60.
    Mothet JP, Fossier P, Meunier FM, Stinnakre J, Tauc L and Baux G. 1998. Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia. J. Physiol. (Lond) 507: 405–414.Google Scholar
  61. 61.
    Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, et al. 1997. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278: 2126–2130.PubMedCrossRefGoogle Scholar
  62. 62.
    Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS, Biswas G, et al. 1999. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biol. 1: 409–414.PubMedCrossRefGoogle Scholar
  63. 63.
    Dipp M and Evans AM. 2001. Cyclic ADP-ribose is the primary trigger for hypoxic pulmonary vasoconstriction in the rat lung in situ. Circ. Res. 89: 77–83.PubMedCrossRefGoogle Scholar
  64. 64.
    Wilson HL, Dipp M, Thomas JM, Lad C, Galione A and Evans AM. 2001. ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor: a primary role for cADPR in hypoxic pulmonary vasoconstriction. J. Biol. Chem. 276: 11180–11188.PubMedCrossRefGoogle Scholar
  65. 65.
    Reyes-Harde M, Empson R, Potter BV, Galione A and Stanton PK. 1999. Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc. Natl. Acad. Sci. USA 96: 4061–4066.PubMedCrossRefGoogle Scholar
  66. 66.
    Sun L, Adebanjo OA, Koval A, Anandatheerthavarada HK, Iqbal J, et al 2002. A novel mechanism for coupling cellular intermediary metabolism to cytosolic Ca2+ signaling via CD38/ADP-ribosyl cyclase, a putative intracellular NAD+ sensor. FASEB J. 16: 302–314.PubMedCrossRefGoogle Scholar
  67. 67.
    Churchill G and Louis C. 1998. Roles of Ca2+ , inositol trisphosphate and cyclic ADP-ribose in mediating intercellularCa2+ signaling in sheep lens cells. J. Cell Sci 111: 1217–1225.PubMedGoogle Scholar
  68. 68.
    Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, et al. 2001. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J. Biol. Chem. 276: 21642–21648.PubMedGoogle Scholar
  69. 69.
    Zocchi E, Podesta M, Pitto A, Usai C, Bruzzone S, et al. 2001. Paracrinally stimulated expansion of early human hemopoietic progenitors by stroma-generated cyclic ADP-ribose. FASEB J. 15: 1610–1612.PubMedGoogle Scholar
  70. 70.
    Franco L, Bruzzone S, Song P, Guida L, Zocchi E, et al. 2001. Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 280: L98–L106.PubMedGoogle Scholar
  71. 71.
    Murayama T, Kurebayashi N and Ogawa Y. 2000. Role of Mg2+ in Ca2+ -induced Ca2+ release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine. Biophys. J. 78: 1810–1824.PubMedCrossRefGoogle Scholar
  72. 72.
    Masumiya H, Li P, Zhang L and Chen SR. 2001. Ryanodine sensitizes the Ca2+ release channel (ryanodine receptor) to Ca2+ activation. J. Biol. Chem. 276: 39727–39735.PubMedCrossRefGoogle Scholar
  73. 73.
    Du GG, Guo X, Khanna VK and MacLennan DH. 2001. Ryanodine sensitizes the cardiac Ca2+ release channel (ryanodine receptor isoform 2) to Ca2+ activation and dissociates as the channel is closed by Ca2+ depletion. Proc. Natl. Acad. Sci. USA 98: 13625–13630.PubMedCrossRefGoogle Scholar
  74. 74.
    Lokuta AJ, Darszon A, Beltran C and Valdivia HH. 1998. Detection and functional characterization of ryanodine receptors from sea urchin eggs. J. Physiol. (Lond) 510: 155–164.CrossRefGoogle Scholar
  75. 75.
    Bodding M. 2001. Histamine-induced Ca2+ release in bovine adrenal chromaffin cells. Naunyn Schmiedebergs Arch. Pharmacol. 364: 508–515.PubMedCrossRefGoogle Scholar
  76. 76.
    DiJulio DH, Watson EL, Pessah IN, Jacobson KL, Ott SM, et al. 1997. Ryanodine receptor type III (Ry3R) identification in mouse parotid acini. Properties and modulation of [3H]ryanodine-bindingsites. J. Biol. Chem. 272: 15687–15696.PubMedCrossRefGoogle Scholar
  77. 77.
    Rosa R, Sanfeliu C, Rodriguez-Farre E, Frandsen A, Schousboe A and Sunol C. 1997. Properties of ryanodine receptors in cultured cerebellar granule neurons: effects of hexachlorocyclohexane isomers and calcium. J. Neurosci. Res. 47: 27–33.PubMedCrossRefGoogle Scholar
  78. 78.
    Fessenden JD, Wang Y, Moore RA, Chen SR, Allen PD and Pessah IN. 2000. Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line. Biophys. J. 79: 2509–2525.PubMedCrossRefGoogle Scholar
  79. 79.
    Lokuta AJ, Komai H, McDowell TS and Valdivia HH. 2002. Functional properties of ryanodine receptors from rat dorsal root ganglia. FEBS Lett 511: 90–96.PubMedCrossRefGoogle Scholar
  80. 80.
    Fruen BR, Bardy JM, Byrem TM, Strasburg GM and Louis CF. 2000. Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am. J. Physiol. Cell Physiol. 279: C724–C733.PubMedGoogle Scholar
  81. 81.
    Meszaros LG, Bak J and Chu A. 1993. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364: 76–79.PubMedCrossRefGoogle Scholar
  82. 82.
    Singh AK. 1999. Early developmental changes in intracellular Ca2+ stores in rat brain. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 123: 163–172.PubMedCrossRefGoogle Scholar
  83. 83.
    Bourguignon LY, Chu A, Jin H and Brandt NR. 1995. Ryanodine receptor-ankyrin interaction regulates internal Ca2+ release in mouse T-lymphoma cells. J. Biol. Chem. 270: 17917–17922.PubMedCrossRefGoogle Scholar
  84. 84.
    Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, et al. 1999. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398: 70–73.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang X, Wen J, Bidasee KR, Besch Jr HR, Wojcikiewicz RJ, et al. 1999. Ryanodine and inositol trisphosphate receptors are differentially distributed and expressed in rat parotid gland. Biochem. J. 340: 519–527.PubMedCrossRefGoogle Scholar
  86. 86.
    Yusufi AN, Cheng J, Thompson MA, Dousa TP, Warner GM, et al. 2001. cADP-ribose/ryanodine channel/Ca2+ Velease signal transduction pathway in mesangial cells. Am. J. Physiol. Renal Physiol. 281: F91–F102.PubMedGoogle Scholar
  87. 87.
    Tanaka Y and Tashjian AH. 1995. Calmodulin is a selective mediator of Ca2+ -induced Ca2+ release via the ryanodine receptor-like Ca2 channel triggered by cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 92: 3244–3248.PubMedCrossRefGoogle Scholar
  88. 88.
    Buck WR, Hoffmann EE, Rakow TL and Shen SS. 1994. Synergistic calcium release in the sea urchin egg by ryanodine and cyclic ADP ribose. Dev. Biol. 163: 1–10.PubMedCrossRefGoogle Scholar
  89. 89.
    Panfoli I, Burlando B and Viarengo A. 1999. Cyclic ADP-ribose-dependent Ca2+ release is modulated by free [Ca2+ ] in the scallop sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 257: 57–62.PubMedCrossRefGoogle Scholar
  90. 90.
    Guo X and Becker PL. 1997. Cyclic ADP-ribose-gated Ca2+ release in sea urchin eggs requires an elevated [Ca2+ ]. J. Biol. Chem. 272: 16984–16989.PubMedCrossRefGoogle Scholar
  91. 91.
    Li PL, Tang WX, Valdivia HH, Zou AP and Campbell WB. 2001. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 280: H208–H215.PubMedGoogle Scholar
  92. 92.
    Sonnleitner A, Conti A, Bertocchini F, Schindler H and Sorrentino V. 1998. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 17: 2790–2798.PubMedCrossRefGoogle Scholar
  93. 93.
    Xiong H, Feng X, Gao L, Xu L, Pasek DA, et al. 1998. Identification of a two EF-hand Ca2+ binding domain in lobster skeletal muscle ryanodine receptor/Ca2+ release channel. Biochemistry 37: 4804–4814.PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang JJ, Williams AJ and Sitsapesan R. 1999. Evidence for novel caffeine and Ca2+ binding sites on the lobster skeletal ryanodine receptor. Br. J. Pharmacol. 126: 1066–1074.PubMedCrossRefGoogle Scholar
  95. 95.
    Balshaw DM, Yamaguchi N and Meissner G. 2002. Modulation of intracellular calcium-release channels by calmodulin. J. Membr. Biol. 185: 1–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Meissner G and Henderson JS. 1987. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J. Biol. Chem. 262: 3065–3073.PubMedGoogle Scholar
  97. 97.
    Lee HC. Aarhus R, Graeff R, Gurnack ME and Walseth TF. 1994. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370: 307–309.PubMedCrossRefGoogle Scholar
  98. 98.
    Ozawa T. 1999. Ryanodine-sensitive Ca2+ release mechanism of rat pancreatic acinar cells is modulated by calmodulin. Biochim. Biophys. Acta 1452: 254–262.PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang X, Wen J, Bidasee KR, Besch HR, Jr. and Rubin RP. 1997. Ryanodine receptor expression is associated with intracellular Ca2+ release in rat parotid acinar cells. Am. J. Physiol. 273: C1306–C1314.PubMedGoogle Scholar
  100. 100.
    Perez CF, Marengo JJ, Bull R and Hidalgo C. 1998. Cyclic ADP-ribose activates caffeine-sensitive calcium channels from sea urchin egg microsomes. Am. J. Physiol. Cell Physiol. 43: C430–C439.Google Scholar
  101. 101.
    Thomas JM, Masgrau R, Churchill GC and Galione A. 2001. Pharmacological characterization of the putative cADP-ribose receptor. Biochem. J. 359: 451–457.PubMedCrossRefGoogle Scholar
  102. 102.
    Balshaw DM, Xu L, Yamaguchi N, Pasek DA and Meissner G. 2001. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J. Biol. Chem. 276: 20144–20153.PubMedCrossRefGoogle Scholar
  103. 103.
    Samso M and Wagenknecht T. 2002. Apocalmodulin and Ca2+ -calmodulin bind to neighboring locations on the ryanodine receptor. J. Biol. Chem. 111: 1349–1353.CrossRefGoogle Scholar
  104. 104.
    Rodney GG, Krol J, Williams B, Beckingham K and Hamilton SL. 2001. The carboxy-terminal calcium binding sites of calmodulin control calmodulin's switch from an activator to an inhibitor of RYR1. Biochemistry 40: 12430–12435.PubMedCrossRefGoogle Scholar
  105. 105.
    Yamaguchi N and Kasai M. 1997. Potentiation of depolarization-induced calcium release from skeletal muscle triads by cyclic ADP-ribose and inositol 1,4,5-trisphosphate. Biochem. Biophys. Res. Commun. 240: 772–777.PubMedCrossRefGoogle Scholar
  106. 106.
    Fulceri R, Rossi R, Bottinelli R, Conti A, Intravaia E, et al. 2001. Ca2+ release induced by cyclic adp ribose in mice lacking type 3 ryanodine receptor. Biochem. Biophys. Res. Comrnun. 288: 697–702.CrossRefGoogle Scholar
  107. 107.
    Takasawa S, Ishida A, Nata K, Nakagawa K, Noguchi N, et al. 1995. Requirement of calmodulin-dependent protein kinase II in cyclic ADP- ribose-mediated intracellular Ca2+ mobilization. J. Biol. Chem. 270: 30257–30259.PubMedCrossRefGoogle Scholar
  108. 108.
    Dulhunty AF, Laver D, Curtis SM, Pace S, Haarmann C and Gallant EM. 2001. Characteristics of irreversible ATP activation suggest that native skeletal ryanodine receptors can be phosphorylated via an endogenous CaMKII. Biophys. J. 81: 3240–3252.PubMedCrossRefGoogle Scholar
  109. 109.
    Bandyopadhyay A, Shin DW, Ahn JO and Kim DH. 2000. Calcineurin regulates ryanodine receptor/Ca2+ -release channels in rat heart. Biochem. J. 352 Pt 1: 61–70.PubMedCrossRefGoogle Scholar
  110. 110.
    Berridge M, Lipp P and Bootman M. 2000. The versatility and universality of calcium signalling. Nature Mol. Cell Biol. Rev. 1: 11–21.CrossRefGoogle Scholar
  111. 111.
    Tripathy A and Meissner G. 1996. Sarcoplasmic reticulum luminal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. Biophys. J. 70:2600–2615.PubMedCrossRefGoogle Scholar
  112. 112.
    Ching LL, Williams AJ and Sitsapesan R. 2000. Evidence for Ca2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ. Res. 87:201–206.PubMedCrossRefGoogle Scholar
  113. 113.
    Lukyanenko V, Gyorke I and Gyorke S. 1996. Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflugers Arch. 432: 1047–1054.PubMedCrossRefGoogle Scholar
  114. 114.
    Gyorke I and Gyorke S. 1998. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys. J. 75: 2801–2810.PubMedCrossRefGoogle Scholar
  115. 115.
    Gilchrist JS, Belcastro AN and Katz S. 1992. Intraluminal Ca2+ dependence of Ca2+ and ryanodine-mediated regulation of skeletal muscle sarcoplasmic reticulum Ca2+ release. J. Biol. Chem. 267: 20850–20856.PubMedGoogle Scholar
  116. 116.
    Herrmann-Frank A and Lehmann-Horn F. 1996. Regulation of the purified Ca2+ release channel/ryanodine receptor complex of skeletal muscle sarcoplasmic reticulum by luminal calcium. Pflugers Arch. 432: 155–157.PubMedCrossRefGoogle Scholar
  117. 117.
    Beard NA, Sakowska MM, Dulhunty AF and Laver DR. 2002. Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys. J. 82: 310–320.PubMedCrossRefGoogle Scholar
  118. 118.
    Nguyen T, Chin WC and Verdugo P. 1998. Role of Ca27lO ion exchange in intracellular storage and release of Ca2+ . Nature 395: 908–912.PubMedCrossRefGoogle Scholar
  119. 119.
    Ikemoto N, Antoniu B, Kang JJ, Meszaros LG and Ronjat M. 1991. Intravesicular calcium transient during calcium release from sarcoplasmic reticulum. Biochemistry 30: 5230–5237.PubMedCrossRefGoogle Scholar
  120. 120.
    Sitsapesan R and Williams AJ. 1995. Cyclic ADP-ribose and related compounds activate sheep skeletal sarcoplasmic reticulum Ca2+ release channel. Am. J. Physiol. 268: C1235–C1240.PubMedGoogle Scholar
  121. 121.
    Galione A, McDougall A, Busa WB, Willmott N, Gillot I and Whitaker M. 1993. Redundant mechanisms of calcium-induced calcium-release underlying calcium waves during fertilization of sea-urchin eggs. Science 261: 348–352.PubMedCrossRefGoogle Scholar
  122. 122.
    Lukyanenko V, Gyorke I, Wiesner TF and Gyorke S. 2001. Potentiation of Ca2+ release by cADP-Ribose in the heart is mediated by enhanced SR Ca2+ uptake into the sarcoplasmic reticulum. Circ. Res. 89: 614–622.PubMedCrossRefGoogle Scholar
  123. 123.
    Dulhunty A, Haarmann C, Green D and Hart J. 2000. How many cysteine residues regulate ryanodine receptor channel activity? Antioxid. Redox. Signal. 2: 27–34.PubMedCrossRefGoogle Scholar
  124. 124.
    Eager KR and Dulhunty AF. 1999. Cardiac ryanodine receptor activity is altered by oxidizing reagents in either the luminal or cytoplasmic solution. J. Membr. Biol. 167: 205–214.PubMedCrossRefGoogle Scholar
  125. 125.
    Sun J. Xu L. Eu JP. Stamler JS and Meissner G. 2001. Classes of thiols that influence the activity of the skeletal muscle calcium release channel. J. Biol. Chem. 276: 15625–15630.PubMedCrossRefGoogle Scholar
  126. 126.
    Elferink JG. 1999. Thimerosal: a versatile sulfhydryl reagent, calcium mobilizer, and cell function-modulating agent. Gen. Pharmacol. 33: 1–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Donoso P, Aracena P and Hidalgo C. 2000. Sulfhydryl oxidation overrides Mg2+ inhibition of calcium-induced calcium release in skeletal muscle triads. Biophys. J. 79: 279–286.PubMedCrossRefGoogle Scholar
  128. 128.
    Suko J and Hellmann G. 1998. Modification of sulfhydryls of the skeletal muscle calcium release channel by organic mercurial compounds alters Ca2+ affinity of regulatory Ca2+ sites in single channel recordings and [3H]ryanodine binding. Biochim. Biophys. Acta 1404:435–450.PubMedCrossRefGoogle Scholar
  129. 129.
    Swann K. 1991. Thimerosal causes calcium oscillations and sensitizes calcium-induced calcium release in unfertilized hamster eggs. FEBS Lett 278: 175–178.PubMedCrossRefGoogle Scholar
  130. 130.
    Swann K. 1992. Different triggers for calcium oscillations in mouse eggs involve a ryanodine-sensitive calcium store. Biochem. J. 287: 79–84.PubMedGoogle Scholar
  131. 131.
    Marengo JJ, Hidalgo C and Bull R. 1998. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys. J. 74: 1263–1277.PubMedCrossRefGoogle Scholar
  132. 132.
    Aghdasi B, Zhang JZ, Wu Y, Reid MB and Hamilton SL. 1997. Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel. J. Biol. Chem. 272: 3739–3748.PubMedCrossRefGoogle Scholar
  133. 133.
    Abramson JJ, Zable AC, Favero TG and Salama G. 1995. Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 270: 29644–29647.PubMedCrossRefGoogle Scholar
  134. 134.
    Suzuki YJ, Cleemann L, Abernethy DR and Morad M. 1998. Glutathione is a cofactor for H202-mediated stimulation of Ca2+ -induced Ca2+ release in cardiac myocytes. Free Radic. Biol. Med. 24: 318–325.PubMedCrossRefGoogle Scholar
  135. 135.
    Machaty Z, Wang WH, Day BN and Prather RS. 1999. Calcium release and subsequent development induced by modification of sulfhydryl groups in porcine oocytes. Biol. Reprod. 60: 1384–1391.PubMedCrossRefGoogle Scholar
  136. 136.
    McDougall A. Gillot I and Whitaker M. 1993. Thimerosal reveals calcium-induced calcium release in unfertilised sea urchin eggs. Zygote 1: 35–42.PubMedGoogle Scholar
  137. 137.
    Zable AC, Favero TG and Abramson JJ. 1997. Glutathione modulates ryanodine receptor from skeletal muscle sarcoplasmic reticulum. Evidence for redox regulation of the Ca2+ release mechanism. J. Biol. Chem. 272: 7069–7077.PubMedCrossRefGoogle Scholar
  138. 138.
    Feng W, Liu G, Allen PD and Pessah IN. 2000. Transmembrane redox sensor of ryanodine receptor complex. J. Biol. Chem. 275: 35902–35907.PubMedCrossRefGoogle Scholar
  139. 139.
    Masuda W. Takenaka S, Tsuyama S, Tokunaga M, Yamaji R, et al. 1997. Inositol 1,4,5-trisphosphate and cyclic ADP-ribose mobilize Ca2+ in a protist, Euglena gracilis. Comp. Biochem. Physiol. C-Pharmacol. Toxicol. Endocr. 118: 279–283.CrossRefGoogle Scholar
  140. 140.
    Tanaka Y and Tashjian AH, Jr. 1994. Thimerosal potentiates Ca2+ release mediated by both the inositol 1 A5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling. J. Biol. Chem. 269: 11247–11253.PubMedGoogle Scholar
  141. 141.
    Chini EN, Liang M and Dousa TP. 1998. Differential effect of pH upon cyclic-ADP-ribose and nicotinate-adenine dinucleotide phosphate-induced Ca2+ release systems. Biochem. J. 335:499–504.PubMedGoogle Scholar
  142. 142.
    Sun J, Xin C, Eu JP, Stamler JS and Meissner G. 2001. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc. Natl. Acad. Sci. USA 98: 11158–11162.PubMedCrossRefGoogle Scholar
  143. 143.
    Feng W, Liu G, Allen PD and Pessah IN. 2000. Transmembrane redox sensor of ryanodine receptor complex. J. Biol. Chem. 275: 35902–35907.PubMedCrossRefGoogle Scholar
  144. 144.
    Eu JP, Sun J, Xu L, Stamler JS and Meissner G. 2000. The skeletal muscle calcium release channel: coupled 02 sensor and NO signaling functions. Cell 102: 499–509.PubMedCrossRefGoogle Scholar
  145. 145.
    Lee HC. 1991. Specific binding of cyclic ADP-ribose to calcium-storing microsomes from sea urchin eggs. J. Biol. Chem. 266: 2276–2281.PubMedGoogle Scholar
  146. 146.
    Kuemmerle JF and Makhlouf GM. 1995. Agonist-stimulated cyclic ADP ribose. Endogenous modulator of Ca2+ - induced Ca2+ release in intestinal longitudinal muscle. J. Biol. Chem. 270: 25488–25494.PubMedCrossRefGoogle Scholar
  147. 147.
    MacKrill JJ. 1999. Protein-protein interactions in intracellular Ca2+ -release channel function. Biochem. J. 337: 345–361.PubMedCrossRefGoogle Scholar
  148. 148.
    Sitsapesan R, McGarry SJ and Williams AJ. 1995. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol. Sci. 16: 386–391.PubMedCrossRefGoogle Scholar
  149. 149.
    Walseth TF, Aarhus R, Kerr JA and Lee HC. 1993. Identification of cyclic ADP-ribose-binding proteins by photoaffinity labeling. J. Biol. Chem. 268: 26686–26691.PubMedGoogle Scholar
  150. 150.
    Paul-Pletzer K, Palnitkar SS, Jimenez LS, Morimoto H and Parness J. 2001. The skeletal muscle ryanodine receptor identified as a molecular target of [3H]azidodantrolene by photoaffinity labeling. Biochemistry 40: 531-542.PubMedCrossRefGoogle Scholar
  151. 151.
    Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, et al. 1994. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523.PubMedCrossRefGoogle Scholar
  152. 152.
    Marx SO, Ondrias K and Marks AR. 1998. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 281: 818–821.PubMedCrossRefGoogle Scholar
  153. 153.
    Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K and Marks AR. 2001. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ. Res. 88: 1151–1158.PubMedCrossRefGoogle Scholar
  154. 154.
    Noguchi N, Takasawa S, Nata K, Tohgo A, Kato I, et al. 1997. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J. Biol. Chem. 272:3133–3136.PubMedCrossRefGoogle Scholar
  155. 155.
    Hashii M, Minabe Y and Higashida H. 2000. cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L- type voltage-activated Ca2+ channels in NG108-15 neuronal cells. Biochem. J. 345: 207–215.PubMedCrossRefGoogle Scholar
  156. 156.
    Tang WX, Chen YF, Zou AP, Campbell WB and Li PL. 2002. Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 282: H1304–H1310.PubMedGoogle Scholar
  157. 157.
    Bultynck G, Rossi D, Callewaert G, Missiaen L, Sorrentino V, et al. 2001. The conserved sites for the FK506-binding proteins in ryanodine receptors and inositol 1,4,5-trisphosphate receptors are structurally and functionally different. J. Biol. Chem. 276: 47715–47724.PubMedCrossRefGoogle Scholar
  158. 158.
    Walseth TF, Wong L, Graeff RM and Lee HC. 1997. Bioassay for determining endogenous levels of cyclic ADP-ribose. Meth. EnzymoL 280: 287–294.PubMedCrossRefGoogle Scholar
  159. 159.
    Lee HC, Galione A and Walseth TF. 1994. Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vitam. Horm. 48: 199–257.PubMedCrossRefGoogle Scholar
  160. 160.
    Takahashi K, Kukimoto I, Tokita K, Inageda K, Inoue S, et al. 1995. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all- trans-retinoic acid. FEBS Lett 371: 204–208.PubMedCrossRefGoogle Scholar
  161. 161.
    Graeff R and Lee HC. 2002. A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity. Biochem. J. 361: 379–384.PubMedGoogle Scholar
  162. 162.
    Kuroda R, Kontani K, Kanda Y, Katada T, Nakano T, et al. 2001. Increase of cGMP, cADP-ribose and inositol 1,4,5-trisphosphate preceding Ca2+ transients in fertilization of sea urchin eggs. Development 128: 4405–4414.PubMedGoogle Scholar
  163. 163.
    Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, et al. 1998. Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic beta-cells. J. Biol. Chem. 273: 2497–2500.PubMedCrossRefGoogle Scholar
  164. 164.
    Webb DL, Islam MS, Efanov AM, Brown G, Kohler M, et al. 1996. Insulin exocytosis and glucose-mediated increase in cytoplasmic free Ca2+ concentration in the pancreatic beta-cell are independent of cyclic ADP-ribose. J. Biol. Chem. 271: 19074–19079.PubMedCrossRefGoogle Scholar
  165. 165.
    Morita K, Kitayama S and Dohi T. 1997. Stimulation of cyclic ADP-ribose synthesis by acetylcholine and its role in catecholamine release in bovine adrenal chromaffin cells. J. Biol. Chem. 272: 21002–21009.PubMedCrossRefGoogle Scholar
  166. 166.
    Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, et al. 2001. Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J Biol Chem 276: 649–655.PubMedCrossRefGoogle Scholar
  167. 167.
    Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S and Okamoto H. 1999. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+ ]i, and insulin secretion. J. Biol. Chem. 274: 1869–1872.PubMedCrossRefGoogle Scholar
  168. 168.
    Partida-Sanchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, et al. 2001. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med. 7: 1209–1216.PubMedCrossRefGoogle Scholar
  169. 169.
    Chini EN, de Toledo FG, Thompson MA and Dousa TP. 1997. Effect of estrogen upon cyclic ADP ribose metabolism: beta-estradiol stimulates ADP ribosyl cyclase in rat uterus. Proc. Natl. Acad. Sci. USA 94: 5872–5876.PubMedCrossRefGoogle Scholar
  170. 170.
    de Toledo FG, Cheng J, Liang M, Chini EN and Dousa TP. 2000. ADP-Ribosyl cyclase in rat vascular smooth muscle cells: properties and regulation. Circ. Res. 86: 1153–1159.PubMedCrossRefGoogle Scholar
  171. 171.
    Dupont G and Swillens S. 1996. Quantal release, incremental detection, and long-period Ca2+ oscillations in a model based on regulatory Ca2+ -binding sites along the permeation pathway. Biophys. J. 71: 1714–1722.PubMedCrossRefGoogle Scholar
  172. 172.
    Morgan AJ and Jacob R. 1998. Differential modulation of the phases of a Ca2+ spike by the store Ca2+ -ATPase in human umbilical vein endothelial cells. J Physiol 513: 83–101.PubMedCrossRefGoogle Scholar
  173. 173.
    Brini M, Bano D, Manni S, Rizzuto R and Carafoli E. 2000. Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca2+ signalling. EMBO J. 19: 4926–4935.PubMedCrossRefGoogle Scholar
  174. 174.
    Petersen CC, Petersen OH and Berridge MJ. 1993. The role of endoplasmic reticulum calcium pumps during cytosolic calcium spiking in pancreatic acinar cells. J. Biol. Chem. 268: 22262–22264.PubMedGoogle Scholar
  175. 175.
    Empson RM and Galione A. 1997. Cyclic ADP-ribose enhances coupling between voltage-gated Ca2+ entry and intracellular Ca2+ release. J. Biol. Chem. 272: 20967–20970.PubMedCrossRefGoogle Scholar
  176. 176.
    Taylor CW. Genazzani AA and Morris SA. 1999. Expression of inositol trisphosphate receptors. Cell Calcium 26: 237–251.PubMedCrossRefGoogle Scholar
  177. 177.
    Churchill GC and Galione A. 2000. Spatial control of Ca2+ signaling by nicotinic acid adenine dinucleotide phosphate diffusion and gradients. J. Biol. Chem. 275: 38687–38692.PubMedCrossRefGoogle Scholar
  178. 178.
    Cancela JM, Churchill GC and Galione A. 1999. Coordination of agonist-induced Ca2+ -signalling patterns by NAADP in pancreatic acinar cells. Nature 398: 74–76.PubMedCrossRefGoogle Scholar
  179. 179.
    Cancela JM, Gerasimenko OV, Gerasimenko JV, Tepikin AV and Petersen OH. 2000. Two different but converging messenger pathways to intracellular Ca2+ release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate. EMBO J. 19: 2549–2557.PubMedCrossRefGoogle Scholar
  180. 180.
    Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, et al. 1999. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J. 18: 4999–5008.PubMedCrossRefGoogle Scholar
  181. 181.
    Kiselyov K, Shin DM, Shcheynikov N, Kurosaki T and Muallem S. 2001. Regulation of Ca2+ -release-activated Ca2+ current (Icrac) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells. Biochem. J. 360: 17–22.PubMedCrossRefGoogle Scholar
  182. 182.
    Paltauf-Doburzynska J, Posch K, Paltauf G and Graier WF. 1998. Stealth ryanodine-sensitive Ca2+ release contributes to activity of capacitative Ca2+ entry and nitric oxide synthase in bovine endothelial cells. J. Physiol. 513: 369–379.PubMedCrossRefGoogle Scholar
  183. 183.
    Guse AH, Berg I, da Silva CP, Potter BV and Mayr GW. 1997. Ca2+ entry induced by cyclic ADP-ribose in intact T-lymphocytes. J. Biol. Chem. 272: 8546–8550.PubMedCrossRefGoogle Scholar
  184. 184.
    Berg I, Potter BV, Mayr GW and Guse AH. 2000. Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an essential regulator of T-lymphocyte Ca2+ -signaling. J. Cell Biol. 150:581–588.PubMedCrossRefGoogle Scholar
  185. 185.
    Chini EN and Dousa TP. 1996. Nicotinate-adenine dinucleotide phosphate-induced Ca2+ -release does not behave as a Ca2+ -induced Ca2+ -release system. Biochem. J. 316: 709–711.PubMedGoogle Scholar
  186. 186.
    Duchen MR. 1999. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol 516: 1–17.PubMedCrossRefGoogle Scholar
  187. 187.
    Ichas F, Jouaville LS and Mazat JP. 1997. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89: 1145–1153.PubMedCrossRefGoogle Scholar
  188. 188.
    Montero M, Alonso MT, Albillos A, Garcia-Sancho J and Alvarez J. 2001. Mitochondrial Ca2+ -induced Ca2+ release mediated by the Ca2+ uniporter. Mol Biol Cell 12:63–71.PubMedGoogle Scholar
  189. 189.
    Beutner G, Sharma VK, Giovannucci DR, Yule DI and Sheu SS. 2001. Identification of a ryanodine receptor in rat heart mitochondria. J. Biol Chem. 276: 21482–21488.PubMedCrossRefGoogle Scholar
  190. 190.
    Liang M, Chini EN, Cheng J and Dousa TP. 1999. Synthesis of NAADP and cADPR in mitochondria. Arch. Biochem. Biophys. 371: 317–325.PubMedCrossRefGoogle Scholar
  191. 191.
    Ziegler M, Jorcke D and Schweiger M. 1997. Identification of bovine liver mitochondrial NADV glycohydrolase as ADP-ribosyl cyclase. Biochem. J. 326: 401–405.PubMedGoogle Scholar
  192. 192.
    Wilding M, Russo GL, Galione A, Marino M and Ijale B. 1998. ADP-ribose gates the fertilization channel in ascidian oocytes. Am. J. Physiol. 275: C1277–C1283.PubMedGoogle Scholar
  193. 193.
    Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, et al. 2001. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293: 1327–1330.PubMedCrossRefGoogle Scholar
  194. 194.
    Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, et al. 2001. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Department of PharmacologyOxford UniversityOxfordUK

Personalised recommendations