Skip to main content

Sensitizing Calcium-Induced Calcium Release

Role of cADPR as an Endogenous Modulator

  • Chapter
Cyclic ADP-Ribose and NAADP

Abstract

The primary mechanism by which cells effect rapid increases in their intracellular Ca2+ concentration ([Ca2+ ]i) is by the opening (gating) of specific channels which facilitate the passage of Ca2+ across a membrane down the electrochemical gradient generated by various pumps and/or exchangers. Whether at the plasma membrane or on intracellular organelles (e.g. endoplasmic reticulum (ER), mitochondria, Golgi), such channels have to be tightly controlled to prevent deleterious or inappropriate elevations of the [Ca2+ ]i. Therefore, cells have developed a seemingly varied repertoire for their discrete regulation. However, this apparent complexity belies the fact that activation, in essence, encompasses only three modes of operation: (a) ligand-gated ion channels (b) voltage-gated ion channels (c) channels regulated by protein-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis RS. 2001. Calcium Signaling Mechanisms in T Lymphocytes. Annu. Rev. Immunol. 19:497–521.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor CW. 1998. Inositol trisphosphate receptors: Ca2+ -modulated intracellular Ca2+ channels. Biochim. Biophys. Acta 1436: 19–33.

    Article  PubMed  CAS  Google Scholar 

  3. Patel S, Churchill GC and Galione A. 2001. Coordination of Ca2+ signalling by NAADP. Trends Biochem. Sci. 26: 482–489.

    Article  CAS  Google Scholar 

  4. Ford LE and Podolsky RJ. 1970. Regenerative calcium release within muscle cells. Science 167:58–59.

    Article  PubMed  CAS  Google Scholar 

  5. Endo M, Tanaka M and Ogawa Y. 1970. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228: 34–36.

    Article  PubMed  CAS  Google Scholar 

  6. Fabiato A and Fabiato F. 1975. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. 249: 469–495.

    PubMed  CAS  Google Scholar 

  7. Fabiato A. 1981. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J. Gen. Physiol. 78: 457–497.

    Article  PubMed  CAS  Google Scholar 

  8. Fabiato A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245: C1–C14.

    PubMed  CAS  Google Scholar 

  9. Niggli E. 1999. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu. Rev. Physiol. 61:311–335.

    Article  PubMed  CAS  Google Scholar 

  10. Ridgway EB, Gilkey JC and Jaffe LF. 1977. Free calcium increases explosively in activating medaka eggs. Proc. Natl. Acad. Sci. USA 74: 623–627.

    Article  PubMed  CAS  Google Scholar 

  11. Allbritton NL, Meyer T and Stryer L. 1992. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258: 1812–1815.

    Article  PubMed  CAS  Google Scholar 

  12. Sutko JL. Airey J A, Welch W and Ruest L. 1997. The pharmacology of ryanodine and related compounds. Pharmacol. Rev. 49: 53–98.

    PubMed  CAS  Google Scholar 

  13. Lai FA, Erickson HP, Rousseau E, Liu QY and Meissner G. 1988. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331: 315–319.

    Article  PubMed  CAS  Google Scholar 

  14. Imagawa T, Smith JS, Coronado R and Campbell KP. 1987. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ -permeable pore of the calcium release channel. J. Biol. Chem. 262: 16636–16643.

    PubMed  CAS  Google Scholar 

  15. Inui M, Saito A and Fleischer S. 1987. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262: 1740–1747.

    PubMed  CAS  Google Scholar 

  16. Inui M, Saito A and Fleischer S. 1987. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J. Biol. Chem. 262: 15637–15642.

    PubMed  CAS  Google Scholar 

  17. Wagenknecht T and Radermacher M. 1997. Ryanodine receptors: structure and macromolecular interactions. Curr. Opin. Struct. Biol. 7: 258–265

    Article  PubMed  CAS  Google Scholar 

  18. Sharma MR, Penczek P, Grassucci R, Xin HB, Fleischer S and Wagenknecht T. 1998. Cryoelectron microscopy and image analysis of the cardiac ryanodine receptor. J. Biol. Chem. 273: 18429–18434.

    Article  PubMed  CAS  Google Scholar 

  19. Liu Z, Zhang J, Sharma MR, Li P, Chen SR and Wagenknecht T. 2001. Three-dimensional reconstruction of the recombinant type 3 ryanodine receptor and localization of its amino terminus. Proc. Natl. Acad. Sci. USA 98: 6104–6109.

    Article  PubMed  CAS  Google Scholar 

  20. Felder E and Franzini-Armstrong C. 2002. Type 3 ryanodine receptors of skeletal muscle are segregated in aparajunctional position. Proc. Natl. Acad. Sci. USA 99: 1695–1700.

    Article  PubMed  CAS  Google Scholar 

  21. Sutko JL and Airey J A. 1996. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol. Rev. 76: 1027–1071.

    PubMed  CAS  Google Scholar 

  22. Shoshan-Barmatz V and Ashley RH. 1998. The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int. Rev. Cytol. 183: 185–270.

    Article  PubMed  CAS  Google Scholar 

  23. Ogawa Y. Kurebayashi N and Murayama T. 1999. Ryanodine receptor isoforms in excitation-contraction coupling. Adv. Biophys. 36: 27–64.

    Article  PubMed  CAS  Google Scholar 

  24. Meissner G. 1994. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu. Rev. Physiol. 56: 485–508.

    Article  PubMed  CAS  Google Scholar 

  25. Hasan G and Rosbash M. 1992. Drosophila homologs of two mammalian intracellular Ca2+ -release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116: 967–975.

    PubMed  CAS  Google Scholar 

  26. Sakube Y, Ando H and Kagawa H. 1993. Cloning and mapping of a ryanodine receptor homolog gene of Caenorhabditis elegans. Ann. NY Acad. Sci. 707: 540–545.

    Article  PubMed  CAS  Google Scholar 

  27. Shiwa M, Murayama T and Ogawa Y. 2002. Molecular cloning and characterization of ryanodine receptor from unfertilized sea urchin eggs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282: R727–R737.

    PubMed  CAS  Google Scholar 

  28. Lee HC. 2001. Physiological Functions of Cyclic ADP-Ribose and NAADP as calcium messengers. Annu. Rev. Pharmacol. Toxicol. 41: 317–345.

    Article  PubMed  Google Scholar 

  29. Clapper DL, Walseth TF, Dargie PJ and Lee HC. 1987. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262: 9561–9568.

    PubMed  CAS  Google Scholar 

  30. Galione A, Lee HC and Busa WB. 1991. Ca2+ -induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253: 1143–1146.

    Article  PubMed  CAS  Google Scholar 

  31. Lee HC. 1993. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J. Biol. Chem. 268: 293–299.

    PubMed  CAS  Google Scholar 

  32. Lee HC, Aarhus R and Graeff RM. 1995. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J. Biol. Chem. 270: 9060–9066.

    Article  PubMed  CAS  Google Scholar 

  33. Graeff RM, Podein RJ, Aarhus R and Lee HC. 1995. Magnesium ions but not ATP inhibit cyclic ADP-ribose-induced calcium release. Biochem. Biophys. Res. Commun. 206:786–791.

    Article  PubMed  CAS  Google Scholar 

  34. Koshiyama H, Lee HC and Tashjian AH. 1991. Novel mechanism of intracellular calcium release in pituitary cells. J. Biol. Chem. 266: 16985–16988.

    PubMed  CAS  Google Scholar 

  35. White AM, Watson SP and Galione A. 1993. Cyclic ADP-ribose-induced Ca2+ release from rat brain microsomes. FEBS Lett 318: 259–263.

    Article  PubMed  CAS  Google Scholar 

  36. Galione A, Cancela J-M, Churchill G, Genazzani A, Lad C, et al. 2000. Methods in cADPR and NAADP research. In Methods in Calcium Signalling, ed. JJ Putney, pp. 249–296. Boca Raton: CRC Press

    Google Scholar 

  37. Churchill GC and Galione A. 2001. Prolonged inactivation of NAADP-induced Ca2+ release mediates a spatiotemporal Ca2+ memory. J. Biol. Chem. 276: 11223–11225.

    Article  PubMed  CAS  Google Scholar 

  38. Kim H, Jacobson EL and Jacobson MK. 1993. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science 261: 1330–1333.

    Article  PubMed  CAS  Google Scholar 

  39. Migaud ME, Pederick RL, Bailey VC and Potter BV. 1999. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors. Biochemistry 38: 9105–9114.

    Article  PubMed  CAS  Google Scholar 

  40. Sauve AA, Deng H-T, Angeletti RH and Schramm VL. 2000. A Covalent Intermediate in CD38 Is Responsible for ADP-ribosylation and Cyclization Reactions. J. Am. Chem. Soc. 122:7855–7859.

    Article  CAS  Google Scholar 

  41. Walseth TF and Lee HC. 1993. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim. Biophys. Acta 1178: 235–242.

    Article  PubMed  CAS  Google Scholar 

  42. Sethi JK, Empson RM, Bailey VC, Potter BV and Galione A. 1997. 7-Deaza-8-bromo-cyclic ADP-ribose, the first membrane-permeant, hydrolysis-resistant cyclic ADP-ribose antagonist. J. Biol. Chem. 272: 16358–16363.

    Article  PubMed  CAS  Google Scholar 

  43. Bailey VC, Sethi JK, Fortt SM, Galione A and Potter BVL. 1997. 7-Deaza cyclic adenosine 5'-diphosphate ribose: First example of a Ca2+ -mobilizing partial agonist related to cyclic adenosine 5'- diphosphate ribose. Chem. Biol. 4: 51–61.

    Article  PubMed  CAS  Google Scholar 

  44. Cui Y, Galione A and Terrar DA. 1999. Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochem. J. 342: 269–273.

    Article  PubMed  CAS  Google Scholar 

  45. Lukyanenko V and Gyorke S. 1999. Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes. J. Physiol. (Lond) 521: 575–585.

    Article  CAS  Google Scholar 

  46. Cancela JM, Van Coppenolle F, Galione A, Tepikin AV and Petersen OH. 2002. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J. 21: 909–919.

    Article  PubMed  CAS  Google Scholar 

  47. Thorn P, Gerasimenko O and Petersen OH. 1994. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells. EMBO J. 13:2038–2043.

    PubMed  CAS  Google Scholar 

  48. Burdakov D, Cancela JM and Petersen OH. 2001. Bombesin-induced cytosolic Ca2+ spiking in pancreatic acinar cells depends on cyclic ADP-ribose and ryanodine receptors. Cell Calcium 29: 211 –216.

    Article  PubMed  CAS  Google Scholar 

  49. Cancela JM. 2001. Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR, and IP3. Annu. Rev. Physiol. 63: 99–117.

    Article  PubMed  CAS  Google Scholar 

  50. Churchill GC and Galione A. 2001. NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J. 20: 2666–2671.

    Article  PubMed  CAS  Google Scholar 

  51. Currie KP, Swann K, Galione A and Scott RH. 1992. Activation of Ca2+ -dependent currents in cultured rat dorsal root ganglion neurones by a sperm factor and cyclic ADP-ribose. Mol. Biol. Cell 3: 1415–1425.

    PubMed  CAS  Google Scholar 

  52. Prakash YS, Kannan MS, Walseth TF and Sieck GC. 1998. Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am. J. Physiol. 274: C1653–C1660.

    PubMed  CAS  Google Scholar 

  53. Rakovic S, Cui Y, Iino S, Galione A, Ashamu GA, et al. 1999. An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J. Biol. Chem. 274: 17820–17827.

    Article  PubMed  CAS  Google Scholar 

  54. Prakash YS, Kannan MS, Walseth TF and Sieck GC. 2000. cADP ribose and [Ca2+ ]i regulation in rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 279: H1482–H1489.

    PubMed  CAS  Google Scholar 

  55. Leite MF, Burgstahler AD and Nathanson MH. 2002. Ca2+ Waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini. Gastroenterology 122: 415–427.

    Article  PubMed  CAS  Google Scholar 

  56. Willmott N, Sethi J, Walseth TF, Lee HC, White AM and Galione A. 1996. Nitric oxide induced mobilization of intracellular calcium via the cyclic ADP-ribose signalling pathway. J. Biol. Chem. 271: 3699–3705.

    Article  PubMed  CAS  Google Scholar 

  57. Fluck R, Abraham V, Miller A and Galione A. 1999. Microinjection of cyclic ADP-ribose triggers a regenerative wave of Ca2+ release and exocytosis of cortical alveoli in medaka eggs. Zygote 7: 285–292.

    Article  PubMed  CAS  Google Scholar 

  58. Lee HC. Aarhus R and Walseth TF. 1993. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261: 352–355.

    Article  PubMed  CAS  Google Scholar 

  59. Polzonetti V, Cardinali M, Mosconi G, Natalini P, Meiri I and Carnevali O. 2002. Cyclic ADPR and calcium signaling in sea bream (Spams aurata) egg fertilization. Mol. Reprod. Dev. 61:213–217.

    Article  PubMed  CAS  Google Scholar 

  60. Mothet JP, Fossier P, Meunier FM, Stinnakre J, Tauc L and Baux G. 1998. Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia. J. Physiol. (Lond) 507: 405–414.

    CAS  Google Scholar 

  61. Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, et al. 1997. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278: 2126–2130.

    Article  PubMed  CAS  Google Scholar 

  62. Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS, Biswas G, et al. 1999. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biol. 1: 409–414.

    Article  PubMed  CAS  Google Scholar 

  63. Dipp M and Evans AM. 2001. Cyclic ADP-ribose is the primary trigger for hypoxic pulmonary vasoconstriction in the rat lung in situ. Circ. Res. 89: 77–83.

    Article  PubMed  CAS  Google Scholar 

  64. Wilson HL, Dipp M, Thomas JM, Lad C, Galione A and Evans AM. 2001. ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor: a primary role for cADPR in hypoxic pulmonary vasoconstriction. J. Biol. Chem. 276: 11180–11188.

    Article  PubMed  CAS  Google Scholar 

  65. Reyes-Harde M, Empson R, Potter BV, Galione A and Stanton PK. 1999. Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc. Natl. Acad. Sci. USA 96: 4061–4066.

    Article  PubMed  CAS  Google Scholar 

  66. Sun L, Adebanjo OA, Koval A, Anandatheerthavarada HK, Iqbal J, et al 2002. A novel mechanism for coupling cellular intermediary metabolism to cytosolic Ca2+ signaling via CD38/ADP-ribosyl cyclase, a putative intracellular NAD+ sensor. FASEB J. 16: 302–314.

    Article  PubMed  CAS  Google Scholar 

  67. Churchill G and Louis C. 1998. Roles of Ca2+ , inositol trisphosphate and cyclic ADP-ribose in mediating intercellularCa2+ signaling in sheep lens cells. J. Cell Sci 111: 1217–1225.

    PubMed  CAS  Google Scholar 

  68. Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, et al. 2001. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J. Biol. Chem. 276: 21642–21648.

    PubMed  CAS  Google Scholar 

  69. Zocchi E, Podesta M, Pitto A, Usai C, Bruzzone S, et al. 2001. Paracrinally stimulated expansion of early human hemopoietic progenitors by stroma-generated cyclic ADP-ribose. FASEB J. 15: 1610–1612.

    PubMed  CAS  Google Scholar 

  70. Franco L, Bruzzone S, Song P, Guida L, Zocchi E, et al. 2001. Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 280: L98–L106.

    PubMed  CAS  Google Scholar 

  71. Murayama T, Kurebayashi N and Ogawa Y. 2000. Role of Mg2+ in Ca2+ -induced Ca2+ release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine. Biophys. J. 78: 1810–1824.

    Article  PubMed  CAS  Google Scholar 

  72. Masumiya H, Li P, Zhang L and Chen SR. 2001. Ryanodine sensitizes the Ca2+ release channel (ryanodine receptor) to Ca2+ activation. J. Biol. Chem. 276: 39727–39735.

    Article  PubMed  CAS  Google Scholar 

  73. Du GG, Guo X, Khanna VK and MacLennan DH. 2001. Ryanodine sensitizes the cardiac Ca2+ release channel (ryanodine receptor isoform 2) to Ca2+ activation and dissociates as the channel is closed by Ca2+ depletion. Proc. Natl. Acad. Sci. USA 98: 13625–13630.

    Article  PubMed  CAS  Google Scholar 

  74. Lokuta AJ, Darszon A, Beltran C and Valdivia HH. 1998. Detection and functional characterization of ryanodine receptors from sea urchin eggs. J. Physiol. (Lond) 510: 155–164.

    Article  CAS  Google Scholar 

  75. Bodding M. 2001. Histamine-induced Ca2+ release in bovine adrenal chromaffin cells. Naunyn Schmiedebergs Arch. Pharmacol. 364: 508–515.

    Article  PubMed  CAS  Google Scholar 

  76. DiJulio DH, Watson EL, Pessah IN, Jacobson KL, Ott SM, et al. 1997. Ryanodine receptor type III (Ry3R) identification in mouse parotid acini. Properties and modulation of [3H]ryanodine-bindingsites. J. Biol. Chem. 272: 15687–15696.

    Article  PubMed  CAS  Google Scholar 

  77. Rosa R, Sanfeliu C, Rodriguez-Farre E, Frandsen A, Schousboe A and Sunol C. 1997. Properties of ryanodine receptors in cultured cerebellar granule neurons: effects of hexachlorocyclohexane isomers and calcium. J. Neurosci. Res. 47: 27–33.

    Article  PubMed  CAS  Google Scholar 

  78. Fessenden JD, Wang Y, Moore RA, Chen SR, Allen PD and Pessah IN. 2000. Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line. Biophys. J. 79: 2509–2525.

    Article  PubMed  CAS  Google Scholar 

  79. Lokuta AJ, Komai H, McDowell TS and Valdivia HH. 2002. Functional properties of ryanodine receptors from rat dorsal root ganglia. FEBS Lett 511: 90–96.

    Article  PubMed  CAS  Google Scholar 

  80. Fruen BR, Bardy JM, Byrem TM, Strasburg GM and Louis CF. 2000. Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am. J. Physiol. Cell Physiol. 279: C724–C733.

    PubMed  CAS  Google Scholar 

  81. Meszaros LG, Bak J and Chu A. 1993. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364: 76–79.

    Article  PubMed  CAS  Google Scholar 

  82. Singh AK. 1999. Early developmental changes in intracellular Ca2+ stores in rat brain. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 123: 163–172.

    Article  PubMed  CAS  Google Scholar 

  83. Bourguignon LY, Chu A, Jin H and Brandt NR. 1995. Ryanodine receptor-ankyrin interaction regulates internal Ca2+ release in mouse T-lymphoma cells. J. Biol. Chem. 270: 17917–17922.

    Article  PubMed  CAS  Google Scholar 

  84. Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, et al. 1999. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398: 70–73.

    Article  PubMed  CAS  Google Scholar 

  85. Zhang X, Wen J, Bidasee KR, Besch Jr HR, Wojcikiewicz RJ, et al. 1999. Ryanodine and inositol trisphosphate receptors are differentially distributed and expressed in rat parotid gland. Biochem. J. 340: 519–527.

    Article  PubMed  CAS  Google Scholar 

  86. Yusufi AN, Cheng J, Thompson MA, Dousa TP, Warner GM, et al. 2001. cADP-ribose/ryanodine channel/Ca2+ Velease signal transduction pathway in mesangial cells. Am. J. Physiol. Renal Physiol. 281: F91–F102.

    PubMed  Google Scholar 

  87. Tanaka Y and Tashjian AH. 1995. Calmodulin is a selective mediator of Ca2+ -induced Ca2+ release via the ryanodine receptor-like Ca2 channel triggered by cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 92: 3244–3248.

    Article  PubMed  CAS  Google Scholar 

  88. Buck WR, Hoffmann EE, Rakow TL and Shen SS. 1994. Synergistic calcium release in the sea urchin egg by ryanodine and cyclic ADP ribose. Dev. Biol. 163: 1–10.

    Article  PubMed  CAS  Google Scholar 

  89. Panfoli I, Burlando B and Viarengo A. 1999. Cyclic ADP-ribose-dependent Ca2+ release is modulated by free [Ca2+ ] in the scallop sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 257: 57–62.

    Article  PubMed  CAS  Google Scholar 

  90. Guo X and Becker PL. 1997. Cyclic ADP-ribose-gated Ca2+ release in sea urchin eggs requires an elevated [Ca2+ ]. J. Biol. Chem. 272: 16984–16989.

    Article  PubMed  CAS  Google Scholar 

  91. Li PL, Tang WX, Valdivia HH, Zou AP and Campbell WB. 2001. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 280: H208–H215.

    PubMed  Google Scholar 

  92. Sonnleitner A, Conti A, Bertocchini F, Schindler H and Sorrentino V. 1998. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 17: 2790–2798.

    Article  PubMed  CAS  Google Scholar 

  93. Xiong H, Feng X, Gao L, Xu L, Pasek DA, et al. 1998. Identification of a two EF-hand Ca2+ binding domain in lobster skeletal muscle ryanodine receptor/Ca2+ release channel. Biochemistry 37: 4804–4814.

    Article  PubMed  CAS  Google Scholar 

  94. Zhang JJ, Williams AJ and Sitsapesan R. 1999. Evidence for novel caffeine and Ca2+ binding sites on the lobster skeletal ryanodine receptor. Br. J. Pharmacol. 126: 1066–1074.

    Article  PubMed  CAS  Google Scholar 

  95. Balshaw DM, Yamaguchi N and Meissner G. 2002. Modulation of intracellular calcium-release channels by calmodulin. J. Membr. Biol. 185: 1–8.

    Article  PubMed  CAS  Google Scholar 

  96. Meissner G and Henderson JS. 1987. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J. Biol. Chem. 262: 3065–3073.

    PubMed  CAS  Google Scholar 

  97. Lee HC. Aarhus R, Graeff R, Gurnack ME and Walseth TF. 1994. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370: 307–309.

    Article  PubMed  CAS  Google Scholar 

  98. Ozawa T. 1999. Ryanodine-sensitive Ca2+ release mechanism of rat pancreatic acinar cells is modulated by calmodulin. Biochim. Biophys. Acta 1452: 254–262.

    Article  PubMed  CAS  Google Scholar 

  99. Zhang X, Wen J, Bidasee KR, Besch HR, Jr. and Rubin RP. 1997. Ryanodine receptor expression is associated with intracellular Ca2+ release in rat parotid acinar cells. Am. J. Physiol. 273: C1306–C1314.

    PubMed  CAS  Google Scholar 

  100. Perez CF, Marengo JJ, Bull R and Hidalgo C. 1998. Cyclic ADP-ribose activates caffeine-sensitive calcium channels from sea urchin egg microsomes. Am. J. Physiol. Cell Physiol. 43: C430–C439.

    Google Scholar 

  101. Thomas JM, Masgrau R, Churchill GC and Galione A. 2001. Pharmacological characterization of the putative cADP-ribose receptor. Biochem. J. 359: 451–457.

    Article  PubMed  CAS  Google Scholar 

  102. Balshaw DM, Xu L, Yamaguchi N, Pasek DA and Meissner G. 2001. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J. Biol. Chem. 276: 20144–20153.

    Article  PubMed  CAS  Google Scholar 

  103. Samso M and Wagenknecht T. 2002. Apocalmodulin and Ca2+ -calmodulin bind to neighboring locations on the ryanodine receptor. J. Biol. Chem. 111: 1349–1353.

    Article  CAS  Google Scholar 

  104. Rodney GG, Krol J, Williams B, Beckingham K and Hamilton SL. 2001. The carboxy-terminal calcium binding sites of calmodulin control calmodulin's switch from an activator to an inhibitor of RYR1. Biochemistry 40: 12430–12435.

    Article  PubMed  CAS  Google Scholar 

  105. Yamaguchi N and Kasai M. 1997. Potentiation of depolarization-induced calcium release from skeletal muscle triads by cyclic ADP-ribose and inositol 1,4,5-trisphosphate. Biochem. Biophys. Res. Commun. 240: 772–777.

    Article  PubMed  Google Scholar 

  106. Fulceri R, Rossi R, Bottinelli R, Conti A, Intravaia E, et al. 2001. Ca2+ release induced by cyclic adp ribose in mice lacking type 3 ryanodine receptor. Biochem. Biophys. Res. Comrnun. 288: 697–702.

    Article  CAS  Google Scholar 

  107. Takasawa S, Ishida A, Nata K, Nakagawa K, Noguchi N, et al. 1995. Requirement of calmodulin-dependent protein kinase II in cyclic ADP- ribose-mediated intracellular Ca2+ mobilization. J. Biol. Chem. 270: 30257–30259.

    Article  PubMed  CAS  Google Scholar 

  108. Dulhunty AF, Laver D, Curtis SM, Pace S, Haarmann C and Gallant EM. 2001. Characteristics of irreversible ATP activation suggest that native skeletal ryanodine receptors can be phosphorylated via an endogenous CaMKII. Biophys. J. 81: 3240–3252.

    Article  PubMed  CAS  Google Scholar 

  109. Bandyopadhyay A, Shin DW, Ahn JO and Kim DH. 2000. Calcineurin regulates ryanodine receptor/Ca2+ -release channels in rat heart. Biochem. J. 352 Pt 1: 61–70.

    Article  PubMed  CAS  Google Scholar 

  110. Berridge M, Lipp P and Bootman M. 2000. The versatility and universality of calcium signalling. Nature Mol. Cell Biol. Rev. 1: 11–21.

    Article  CAS  Google Scholar 

  111. Tripathy A and Meissner G. 1996. Sarcoplasmic reticulum luminal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. Biophys. J. 70:2600–2615.

    Article  PubMed  CAS  Google Scholar 

  112. Ching LL, Williams AJ and Sitsapesan R. 2000. Evidence for Ca2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ. Res. 87:201–206.

    Article  PubMed  CAS  Google Scholar 

  113. Lukyanenko V, Gyorke I and Gyorke S. 1996. Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflugers Arch. 432: 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  114. Gyorke I and Gyorke S. 1998. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys. J. 75: 2801–2810.

    Article  PubMed  CAS  Google Scholar 

  115. Gilchrist JS, Belcastro AN and Katz S. 1992. Intraluminal Ca2+ dependence of Ca2+ and ryanodine-mediated regulation of skeletal muscle sarcoplasmic reticulum Ca2+ release. J. Biol. Chem. 267: 20850–20856.

    PubMed  CAS  Google Scholar 

  116. Herrmann-Frank A and Lehmann-Horn F. 1996. Regulation of the purified Ca2+ release channel/ryanodine receptor complex of skeletal muscle sarcoplasmic reticulum by luminal calcium. Pflugers Arch. 432: 155–157.

    Article  PubMed  CAS  Google Scholar 

  117. Beard NA, Sakowska MM, Dulhunty AF and Laver DR. 2002. Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys. J. 82: 310–320.

    Article  PubMed  CAS  Google Scholar 

  118. Nguyen T, Chin WC and Verdugo P. 1998. Role of Ca27lO ion exchange in intracellular storage and release of Ca2+ . Nature 395: 908–912.

    Article  PubMed  CAS  Google Scholar 

  119. Ikemoto N, Antoniu B, Kang JJ, Meszaros LG and Ronjat M. 1991. Intravesicular calcium transient during calcium release from sarcoplasmic reticulum. Biochemistry 30: 5230–5237.

    Article  PubMed  CAS  Google Scholar 

  120. Sitsapesan R and Williams AJ. 1995. Cyclic ADP-ribose and related compounds activate sheep skeletal sarcoplasmic reticulum Ca2+ release channel. Am. J. Physiol. 268: C1235–C1240.

    PubMed  CAS  Google Scholar 

  121. Galione A, McDougall A, Busa WB, Willmott N, Gillot I and Whitaker M. 1993. Redundant mechanisms of calcium-induced calcium-release underlying calcium waves during fertilization of sea-urchin eggs. Science 261: 348–352.

    Article  PubMed  CAS  Google Scholar 

  122. Lukyanenko V, Gyorke I, Wiesner TF and Gyorke S. 2001. Potentiation of Ca2+ release by cADP-Ribose in the heart is mediated by enhanced SR Ca2+ uptake into the sarcoplasmic reticulum. Circ. Res. 89: 614–622.

    Article  PubMed  CAS  Google Scholar 

  123. Dulhunty A, Haarmann C, Green D and Hart J. 2000. How many cysteine residues regulate ryanodine receptor channel activity? Antioxid. Redox. Signal. 2: 27–34.

    Article  PubMed  CAS  Google Scholar 

  124. Eager KR and Dulhunty AF. 1999. Cardiac ryanodine receptor activity is altered by oxidizing reagents in either the luminal or cytoplasmic solution. J. Membr. Biol. 167: 205–214.

    Article  PubMed  CAS  Google Scholar 

  125. Sun J. Xu L. Eu JP. Stamler JS and Meissner G. 2001. Classes of thiols that influence the activity of the skeletal muscle calcium release channel. J. Biol. Chem. 276: 15625–15630.

    Article  PubMed  CAS  Google Scholar 

  126. Elferink JG. 1999. Thimerosal: a versatile sulfhydryl reagent, calcium mobilizer, and cell function-modulating agent. Gen. Pharmacol. 33: 1–6.

    Article  PubMed  CAS  Google Scholar 

  127. Donoso P, Aracena P and Hidalgo C. 2000. Sulfhydryl oxidation overrides Mg2+ inhibition of calcium-induced calcium release in skeletal muscle triads. Biophys. J. 79: 279–286.

    Article  PubMed  CAS  Google Scholar 

  128. Suko J and Hellmann G. 1998. Modification of sulfhydryls of the skeletal muscle calcium release channel by organic mercurial compounds alters Ca2+ affinity of regulatory Ca2+ sites in single channel recordings and [3H]ryanodine binding. Biochim. Biophys. Acta 1404:435–450.

    Article  PubMed  CAS  Google Scholar 

  129. Swann K. 1991. Thimerosal causes calcium oscillations and sensitizes calcium-induced calcium release in unfertilized hamster eggs. FEBS Lett 278: 175–178.

    Article  PubMed  CAS  Google Scholar 

  130. Swann K. 1992. Different triggers for calcium oscillations in mouse eggs involve a ryanodine-sensitive calcium store. Biochem. J. 287: 79–84.

    PubMed  CAS  Google Scholar 

  131. Marengo JJ, Hidalgo C and Bull R. 1998. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys. J. 74: 1263–1277.

    Article  PubMed  CAS  Google Scholar 

  132. Aghdasi B, Zhang JZ, Wu Y, Reid MB and Hamilton SL. 1997. Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel. J. Biol. Chem. 272: 3739–3748.

    Article  PubMed  CAS  Google Scholar 

  133. Abramson JJ, Zable AC, Favero TG and Salama G. 1995. Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 270: 29644–29647.

    Article  PubMed  CAS  Google Scholar 

  134. Suzuki YJ, Cleemann L, Abernethy DR and Morad M. 1998. Glutathione is a cofactor for H202-mediated stimulation of Ca2+ -induced Ca2+ release in cardiac myocytes. Free Radic. Biol. Med. 24: 318–325.

    Article  PubMed  CAS  Google Scholar 

  135. Machaty Z, Wang WH, Day BN and Prather RS. 1999. Calcium release and subsequent development induced by modification of sulfhydryl groups in porcine oocytes. Biol. Reprod. 60: 1384–1391.

    Article  PubMed  CAS  Google Scholar 

  136. McDougall A. Gillot I and Whitaker M. 1993. Thimerosal reveals calcium-induced calcium release in unfertilised sea urchin eggs. Zygote 1: 35–42.

    PubMed  Google Scholar 

  137. Zable AC, Favero TG and Abramson JJ. 1997. Glutathione modulates ryanodine receptor from skeletal muscle sarcoplasmic reticulum. Evidence for redox regulation of the Ca2+ release mechanism. J. Biol. Chem. 272: 7069–7077.

    Article  PubMed  CAS  Google Scholar 

  138. Feng W, Liu G, Allen PD and Pessah IN. 2000. Transmembrane redox sensor of ryanodine receptor complex. J. Biol. Chem. 275: 35902–35907.

    Article  PubMed  CAS  Google Scholar 

  139. Masuda W. Takenaka S, Tsuyama S, Tokunaga M, Yamaji R, et al. 1997. Inositol 1,4,5-trisphosphate and cyclic ADP-ribose mobilize Ca2+ in a protist, Euglena gracilis. Comp. Biochem. Physiol. C-Pharmacol. Toxicol. Endocr. 118: 279–283.

    Article  CAS  Google Scholar 

  140. Tanaka Y and Tashjian AH, Jr. 1994. Thimerosal potentiates Ca2+ release mediated by both the inositol 1 A5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling. J. Biol. Chem. 269: 11247–11253.

    PubMed  CAS  Google Scholar 

  141. Chini EN, Liang M and Dousa TP. 1998. Differential effect of pH upon cyclic-ADP-ribose and nicotinate-adenine dinucleotide phosphate-induced Ca2+ release systems. Biochem. J. 335:499–504.

    PubMed  CAS  Google Scholar 

  142. Sun J, Xin C, Eu JP, Stamler JS and Meissner G. 2001. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc. Natl. Acad. Sci. USA 98: 11158–11162.

    Article  PubMed  CAS  Google Scholar 

  143. Feng W, Liu G, Allen PD and Pessah IN. 2000. Transmembrane redox sensor of ryanodine receptor complex. J. Biol. Chem. 275: 35902–35907.

    Article  PubMed  CAS  Google Scholar 

  144. Eu JP, Sun J, Xu L, Stamler JS and Meissner G. 2000. The skeletal muscle calcium release channel: coupled 02 sensor and NO signaling functions. Cell 102: 499–509.

    Article  PubMed  CAS  Google Scholar 

  145. Lee HC. 1991. Specific binding of cyclic ADP-ribose to calcium-storing microsomes from sea urchin eggs. J. Biol. Chem. 266: 2276–2281.

    PubMed  CAS  Google Scholar 

  146. Kuemmerle JF and Makhlouf GM. 1995. Agonist-stimulated cyclic ADP ribose. Endogenous modulator of Ca2+ - induced Ca2+ release in intestinal longitudinal muscle. J. Biol. Chem. 270: 25488–25494.

    Article  PubMed  CAS  Google Scholar 

  147. MacKrill JJ. 1999. Protein-protein interactions in intracellular Ca2+ -release channel function. Biochem. J. 337: 345–361.

    Article  PubMed  CAS  Google Scholar 

  148. Sitsapesan R, McGarry SJ and Williams AJ. 1995. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol. Sci. 16: 386–391.

    Article  PubMed  CAS  Google Scholar 

  149. Walseth TF, Aarhus R, Kerr JA and Lee HC. 1993. Identification of cyclic ADP-ribose-binding proteins by photoaffinity labeling. J. Biol. Chem. 268: 26686–26691.

    PubMed  CAS  Google Scholar 

  150. Paul-Pletzer K, Palnitkar SS, Jimenez LS, Morimoto H and Parness J. 2001. The skeletal muscle ryanodine receptor identified as a molecular target of [3H]azidodantrolene by photoaffinity labeling. Biochemistry 40: 531-542.

    Article  PubMed  CAS  Google Scholar 

  151. Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, et al. 1994. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523.

    Article  PubMed  CAS  Google Scholar 

  152. Marx SO, Ondrias K and Marks AR. 1998. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 281: 818–821.

    Article  PubMed  CAS  Google Scholar 

  153. Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K and Marks AR. 2001. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ. Res. 88: 1151–1158.

    Article  PubMed  CAS  Google Scholar 

  154. Noguchi N, Takasawa S, Nata K, Tohgo A, Kato I, et al. 1997. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J. Biol. Chem. 272:3133–3136.

    Article  PubMed  CAS  Google Scholar 

  155. Hashii M, Minabe Y and Higashida H. 2000. cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L- type voltage-activated Ca2+ channels in NG108-15 neuronal cells. Biochem. J. 345: 207–215.

    Article  PubMed  Google Scholar 

  156. Tang WX, Chen YF, Zou AP, Campbell WB and Li PL. 2002. Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 282: H1304–H1310.

    PubMed  CAS  Google Scholar 

  157. Bultynck G, Rossi D, Callewaert G, Missiaen L, Sorrentino V, et al. 2001. The conserved sites for the FK506-binding proteins in ryanodine receptors and inositol 1,4,5-trisphosphate receptors are structurally and functionally different. J. Biol. Chem. 276: 47715–47724.

    Article  PubMed  CAS  Google Scholar 

  158. Walseth TF, Wong L, Graeff RM and Lee HC. 1997. Bioassay for determining endogenous levels of cyclic ADP-ribose. Meth. EnzymoL 280: 287–294.

    Article  PubMed  CAS  Google Scholar 

  159. Lee HC, Galione A and Walseth TF. 1994. Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vitam. Horm. 48: 199–257.

    Article  PubMed  CAS  Google Scholar 

  160. Takahashi K, Kukimoto I, Tokita K, Inageda K, Inoue S, et al. 1995. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all- trans-retinoic acid. FEBS Lett 371: 204–208.

    Article  PubMed  CAS  Google Scholar 

  161. Graeff R and Lee HC. 2002. A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity. Biochem. J. 361: 379–384.

    PubMed  CAS  Google Scholar 

  162. Kuroda R, Kontani K, Kanda Y, Katada T, Nakano T, et al. 2001. Increase of cGMP, cADP-ribose and inositol 1,4,5-trisphosphate preceding Ca2+ transients in fertilization of sea urchin eggs. Development 128: 4405–4414.

    PubMed  CAS  Google Scholar 

  163. Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, et al. 1998. Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic beta-cells. J. Biol. Chem. 273: 2497–2500.

    Article  PubMed  CAS  Google Scholar 

  164. Webb DL, Islam MS, Efanov AM, Brown G, Kohler M, et al. 1996. Insulin exocytosis and glucose-mediated increase in cytoplasmic free Ca2+ concentration in the pancreatic beta-cell are independent of cyclic ADP-ribose. J. Biol. Chem. 271: 19074–19079.

    Article  PubMed  CAS  Google Scholar 

  165. Morita K, Kitayama S and Dohi T. 1997. Stimulation of cyclic ADP-ribose synthesis by acetylcholine and its role in catecholamine release in bovine adrenal chromaffin cells. J. Biol. Chem. 272: 21002–21009.

    Article  PubMed  CAS  Google Scholar 

  166. Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, et al. 2001. Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J Biol Chem 276: 649–655.

    Article  PubMed  CAS  Google Scholar 

  167. Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S and Okamoto H. 1999. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+ ]i, and insulin secretion. J. Biol. Chem. 274: 1869–1872.

    Article  PubMed  CAS  Google Scholar 

  168. Partida-Sanchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, et al. 2001. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med. 7: 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  169. Chini EN, de Toledo FG, Thompson MA and Dousa TP. 1997. Effect of estrogen upon cyclic ADP ribose metabolism: beta-estradiol stimulates ADP ribosyl cyclase in rat uterus. Proc. Natl. Acad. Sci. USA 94: 5872–5876.

    Article  PubMed  CAS  Google Scholar 

  170. de Toledo FG, Cheng J, Liang M, Chini EN and Dousa TP. 2000. ADP-Ribosyl cyclase in rat vascular smooth muscle cells: properties and regulation. Circ. Res. 86: 1153–1159.

    Article  PubMed  Google Scholar 

  171. Dupont G and Swillens S. 1996. Quantal release, incremental detection, and long-period Ca2+ oscillations in a model based on regulatory Ca2+ -binding sites along the permeation pathway. Biophys. J. 71: 1714–1722.

    Article  PubMed  CAS  Google Scholar 

  172. Morgan AJ and Jacob R. 1998. Differential modulation of the phases of a Ca2+ spike by the store Ca2+ -ATPase in human umbilical vein endothelial cells. J Physiol 513: 83–101.

    Article  PubMed  CAS  Google Scholar 

  173. Brini M, Bano D, Manni S, Rizzuto R and Carafoli E. 2000. Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca2+ signalling. EMBO J. 19: 4926–4935.

    Article  PubMed  CAS  Google Scholar 

  174. Petersen CC, Petersen OH and Berridge MJ. 1993. The role of endoplasmic reticulum calcium pumps during cytosolic calcium spiking in pancreatic acinar cells. J. Biol. Chem. 268: 22262–22264.

    PubMed  CAS  Google Scholar 

  175. Empson RM and Galione A. 1997. Cyclic ADP-ribose enhances coupling between voltage-gated Ca2+ entry and intracellular Ca2+ release. J. Biol. Chem. 272: 20967–20970.

    Article  PubMed  CAS  Google Scholar 

  176. Taylor CW. Genazzani AA and Morris SA. 1999. Expression of inositol trisphosphate receptors. Cell Calcium 26: 237–251.

    Article  PubMed  CAS  Google Scholar 

  177. Churchill GC and Galione A. 2000. Spatial control of Ca2+ signaling by nicotinic acid adenine dinucleotide phosphate diffusion and gradients. J. Biol. Chem. 275: 38687–38692.

    Article  PubMed  CAS  Google Scholar 

  178. Cancela JM, Churchill GC and Galione A. 1999. Coordination of agonist-induced Ca2+ -signalling patterns by NAADP in pancreatic acinar cells. Nature 398: 74–76.

    Article  PubMed  CAS  Google Scholar 

  179. Cancela JM, Gerasimenko OV, Gerasimenko JV, Tepikin AV and Petersen OH. 2000. Two different but converging messenger pathways to intracellular Ca2+ release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate. EMBO J. 19: 2549–2557.

    Article  PubMed  CAS  Google Scholar 

  180. Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, et al. 1999. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J. 18: 4999–5008.

    Article  PubMed  CAS  Google Scholar 

  181. Kiselyov K, Shin DM, Shcheynikov N, Kurosaki T and Muallem S. 2001. Regulation of Ca2+ -release-activated Ca2+ current (Icrac) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells. Biochem. J. 360: 17–22.

    Article  PubMed  CAS  Google Scholar 

  182. Paltauf-Doburzynska J, Posch K, Paltauf G and Graier WF. 1998. Stealth ryanodine-sensitive Ca2+ release contributes to activity of capacitative Ca2+ entry and nitric oxide synthase in bovine endothelial cells. J. Physiol. 513: 369–379.

    Article  PubMed  CAS  Google Scholar 

  183. Guse AH, Berg I, da Silva CP, Potter BV and Mayr GW. 1997. Ca2+ entry induced by cyclic ADP-ribose in intact T-lymphocytes. J. Biol. Chem. 272: 8546–8550.

    Article  PubMed  CAS  Google Scholar 

  184. Berg I, Potter BV, Mayr GW and Guse AH. 2000. Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an essential regulator of T-lymphocyte Ca2+ -signaling. J. Cell Biol. 150:581–588.

    Article  PubMed  CAS  Google Scholar 

  185. Chini EN and Dousa TP. 1996. Nicotinate-adenine dinucleotide phosphate-induced Ca2+ -release does not behave as a Ca2+ -induced Ca2+ -release system. Biochem. J. 316: 709–711.

    PubMed  CAS  Google Scholar 

  186. Duchen MR. 1999. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol 516: 1–17.

    Article  PubMed  CAS  Google Scholar 

  187. Ichas F, Jouaville LS and Mazat JP. 1997. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89: 1145–1153.

    Article  PubMed  CAS  Google Scholar 

  188. Montero M, Alonso MT, Albillos A, Garcia-Sancho J and Alvarez J. 2001. Mitochondrial Ca2+ -induced Ca2+ release mediated by the Ca2+ uniporter. Mol Biol Cell 12:63–71.

    PubMed  CAS  Google Scholar 

  189. Beutner G, Sharma VK, Giovannucci DR, Yule DI and Sheu SS. 2001. Identification of a ryanodine receptor in rat heart mitochondria. J. Biol Chem. 276: 21482–21488.

    Article  PubMed  CAS  Google Scholar 

  190. Liang M, Chini EN, Cheng J and Dousa TP. 1999. Synthesis of NAADP and cADPR in mitochondria. Arch. Biochem. Biophys. 371: 317–325.

    Article  PubMed  CAS  Google Scholar 

  191. Ziegler M, Jorcke D and Schweiger M. 1997. Identification of bovine liver mitochondrial NADV glycohydrolase as ADP-ribosyl cyclase. Biochem. J. 326: 401–405.

    PubMed  CAS  Google Scholar 

  192. Wilding M, Russo GL, Galione A, Marino M and Ijale B. 1998. ADP-ribose gates the fertilization channel in ascidian oocytes. Am. J. Physiol. 275: C1277–C1283.

    PubMed  CAS  Google Scholar 

  193. Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, et al. 2001. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293: 1327–1330.

    Article  PubMed  CAS  Google Scholar 

  194. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, et al. 2001. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morgan, A.J., Galione, A. (2002). Sensitizing Calcium-Induced Calcium Release. In: Lee, H.C. (eds) Cyclic ADP-Ribose and NAADP. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0269-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0269-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4996-9

  • Online ISBN: 978-1-4615-0269-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics