Skip to main content

Separate but Interacting Calcium Stores

  • Chapter
Cyclic ADP-Ribose and NAADP

Abstract

Mobilization of intracellular Ca2+ stores is a principal signaling mechanism employed by cells to respond to a wide variety of stimuli, both external and internal. One of the most dramatic examples occurs during fertilization. Immediately after sperm-egg fusion, a highly localized Ca2+ elevation is initiated right at the fusion site. This spark of Ca2+ then grows into a wave propagating across the entire egg. Intriguingly, the initiation of apoptotic cell death also involves Ca2+ mobilization. How cells can differentiate between Ca2+ signals as disparate as those governing life and death is a question of fundamental importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Streb H, Irvine RF, Berridge MJ and Schulz I. 1983. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–69.

    Article  PubMed  CAS  Google Scholar 

  2. Berridge MJ. 1983. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212: 849–858.

    PubMed  CAS  Google Scholar 

  3. Clapper DL, Walseth TF, Dargie PJ and Lee HC. 1987. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262: 9561–9568.

    PubMed  CAS  Google Scholar 

  4. Lee HC, Walseth TF, Bratt GT, Hayes RN and Clapper DL. 1989. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J. Biol. Chem. 264: 1608–1615.

    PubMed  CAS  Google Scholar 

  5. Lee HC and Aarhus R. 1995. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J. Biol. Chem. 270: 2152–2157.

    Article  PubMed  CAS  Google Scholar 

  6. Lee HC. 1997. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev. 11: 1133–1164.

    Google Scholar 

  7. Lee HC. 2001. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Ann. Rev. Pharmacol. Toxicol. 41: 317–345.

    Article  Google Scholar 

  8. Zocchi E, Carpaneto A, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Franco L and Usai C. 2002. The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 98: 14859–14864.

    Article  CAS  Google Scholar 

  9. Masuda W, Takenaka S, Inageda K, Nishina H, Takahashi K, Katada T, Tsuyama S, Inui H, Miyatake K and Nakano Y. 1997. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena Gracilis. FEBS Lett. 405: 104–106.

    Article  PubMed  CAS  Google Scholar 

  10. Zocchi E, Daga A, Usai C, Franco L, Guida L, Bruzzone S, Costa A, Marchetti C and Deflora A. 1998. Expression of CD38 increases intracellular calcium concentration and reduces doubling time in HeLa and 3T3 cells. J. Biol. Chem. 273: 8017–8024.

    Article  PubMed  CAS  Google Scholar 

  11. Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A and De Flora A. 2001. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J. Biol. Chem. 276: 21642–21648.

    PubMed  CAS  Google Scholar 

  12. Dargie PJ, Agre MC and Lee HC. 1990. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate. Cell Regul. 1: 279–290.

    PubMed  CAS  Google Scholar 

  13. Kuroda R, Kontani K, Kanda Y, Katada T, Nakano T, Satoh Y-I, Suzuki N and Kuroda H. 2001. Increase of cGMP, cADP-ribose and inositol 1,4,5-trisphosphate preceding Ca2+ transients in fertilization of sea urchin eggs. Development 128: 4405–4414.

    PubMed  CAS  Google Scholar 

  14. Lee HC. 1996. Cyclic ADP-ribose and calcium signaling in eggs. Biol. Signals 5: 101–110.

    Article  PubMed  CAS  Google Scholar 

  15. Okamoto H. 1999. The CD38-cyclic ADP-ribose signaling system in insulin secretion. Mol. Cell. Biochem. 193: 115–118.

    Article  PubMed  CAS  Google Scholar 

  16. Lino S, Cui Y, Galione A and Terrar DA. 1997. Actions of cADP-ribose and its antagonists on contraction in guinea pig isolated ventricular myocytes - Influence of temperature. Circ. Res. 81: 879–884.

    Article  PubMed  CAS  Google Scholar 

  17. Partida-Sanchez S, Cockayne D, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodricj S, Howard M, Harmsen A, Randall T and Lund FE. 2001. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med. 7: 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  18. Reyes-Harde M, Empson R, Potter BVL, Galione A and Stanton PK. 1999. Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc. Natl. Acad. Sci. USA 96: 4061–4066.

    Article  PubMed  CAS  Google Scholar 

  19. Reyes-Harde M, Potter BVL, Galione A and Stanton PK. 1999. Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and Ca2+ release from cyclic ADP-ribose-sensitive stores. J. Neurophysioi 82: 1569–1576.

    CAS  Google Scholar 

  20. Podesta M, Zocchi E, Pitto A, Usai C, Franco L, Bruzzone S, Guida L, Bacigalupo A, Scadden DT, Walseth TF, De Flora A and Daga A. 2000. Extracellular cyclic ADP-ribose increases intracellular free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB J. 14: 680–690.

    PubMed  CAS  Google Scholar 

  21. Zocchi E, Podesta M, Pitto A, Usai C, Bruzzone S, Franco L, Guida L, Bacigalupo A and De Flora A. 2001. Paracrinally stimulated expansion of early human hemopoietic progenitors by stroma-generated cyclic ADP-ribose. FASEB J. 15: 1610–1612.

    PubMed  CAS  Google Scholar 

  22. Walseth TF and Lee HC. 1993. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim. Biophys. Acta 1178: 235–242.

    Article  PubMed  CAS  Google Scholar 

  23. Sethi JK, Empson RM, Bailey VC, Potter BVL and Galione A. 1997. 7-Deaza-8-bromo-cyclic ADP-ribose, the first membrane-permeant, hydrolysis-resistant cyclic ADP-ribose antagonist. J. Biol. Chem. 272: 16358–16363.

    Article  PubMed  Google Scholar 

  24. Deflora A, Guida L, Franco L, Zocchi E, Pestarino M, Usai C, Marchetti C, Fedele E, Fontana G and Raiteri M. 1996. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum. Biochem. J. 320: 665–671.

    CAS  Google Scholar 

  25. Franco L, Bruzzone S, Song P, Guida L, Zocchi E, Walseth TF, Crimi E, Usai C, De Flora A and Brusasco V. 2001. Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle. Am. J. Physiol. 280: L98–L106.

    CAS  Google Scholar 

  26. Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, Sato M, Ohsaga A, Sato K, Shirato K, Okamoto H and Maruyama Y. 2001. Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J. Biol. Chem. 276: 649–655.

    Article  PubMed  CAS  Google Scholar 

  27. Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R and Chua NH. 1997. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278: 2126–2130.

    Article  PubMed  CAS  Google Scholar 

  28. Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BVL and Mayr GW. 1999. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398: 70–73.

    Article  PubMed  CAS  Google Scholar 

  29. Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S and Okamoto H. 1998. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i and insulin secretion. J. Biol. Chem. 274: 1869–1872.

    Article  Google Scholar 

  30. Takahashi K, Kukimoto I, Tokita K, Inageda K, Inoue S, Kontani K, Hoshino S, Nishina H, Kanaho Y and Katada T. 1995. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all-trans-retinoic acid. FEBS Lett. 371: 204–208.

    Article  PubMed  CAS  Google Scholar 

  31. Polzonetti V, Cardinali M, Mosconi G, Natalini P, Meiri I and Carnevali O. 2002. Cyclic ADPR and calcium signaling in sea bream (Sparus aurata) egg fertilization. Mol. Reprod. Dev. 61:213–217.

    Article  PubMed  CAS  Google Scholar 

  32. Masuda W, Takenaka S, Tsuyama S, Tokunaga M, Yamaji R, Inui H, Miyatake K and Nakano Y. 1997. Inositol 1,4,5-trisphosphate and cyclic ADP-ribose mobilize Ca2+ in a protist, Euglena Gracilis. Comp. Biochem. Physiol. 118: 279–283.

    CAS  Google Scholar 

  33. Allen GJ, Muir SR and Sanders D. 1995. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 268: 735–737.

    Article  PubMed  CAS  Google Scholar 

  34. Leckie CP, McAinsh MR, Allen GJ, Sanders D and Hetherington AM. 1998. Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95: 15837–15842.

    Article  PubMed  CAS  Google Scholar 

  35. Navazio L, Mariani P and Sanders D. 2001. Mobilization of Ca2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets. Plant Physiol. 125: 2129–2138.

    Article  PubMed  CAS  Google Scholar 

  36. Durner J, Wendehenne D and Klessig DF. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95: 10328–10333.

    Article  PubMed  CAS  Google Scholar 

  37. Rusinko N and Lee HC. 1989. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J. Biol. Chem. 264: 11725–11731.

    PubMed  CAS  Google Scholar 

  38. Galione A. Lee HC and Busa WB. 1991. Ca2+-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253: 1143–1146.

    Article  PubMed  CAS  Google Scholar 

  39. Santella L and Kyozuka K. 1997. Effects of 1-methyladenine on nuclear Ca2+ transients and meiosis resumption in starfish oocytes are mimicked by the nuclear injection of inositol 1,4,5-trisphosphate and cADP-ribose. Cell Calium 22: 11–20.

    Article  CAS  Google Scholar 

  40. Mothet JP, Fossier P, Meunier FM, Stinnakre J, Tauc L and Baux G. 1998. Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia. J. Physiol. 507.2: 405–414.

    Google Scholar 

  41. Albrieux M, Lee HC and Villaz M. 1998. Calcium signaling by cyclic ADP-ribose, NAADP, and inositol trisphosphate are involved in distinct functions in Ascidian oocytes. J. Biol. Chem. 273: 14566–14574.

    Article  PubMed  CAS  Google Scholar 

  42. Messutat S, Heine M and Wicher D. 2001. Calcium-induced calcium release in neurosecretory insect neurons:fast and slow responses. Cell Calcium 30: 199–211.

    Article  PubMed  CAS  Google Scholar 

  43. Fluck R, Abraham V, Miller A and Galione A. 1999. Microinjection of cyclic ADP-ribose triggers a regenerative wave of Ca2+ release and exocytosis of cortical alveoli in medaka eggs. Zygote 7: 285–292.

    Article  PubMed  CAS  Google Scholar 

  44. Hua SY, Tokimasa T, Takasawa S, Furuya Y, Nohmi M, Okamoto H and Kuba K. 1994. Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron 12: 1073–1079.

    Article  PubMed  CAS  Google Scholar 

  45. Brailoiu E and Miyamoto D. 2000. Inositol trisphosphate and cyclic adenosine diphosphate-ribose increase quantal transmitter release at frog motor nerve terminals: Possible involvement of smooth endoplasmic reticulum. Neuroscience 95: 927–931.

    Article  PubMed  CAS  Google Scholar 

  46. Graeff R and Lee HC. 2002. A novel cycling assay for cellular cyclic ADP-ribose with nanomolar sensitivity.Biochem. J. 361: 379–384.

    PubMed  CAS  Google Scholar 

  47. Khoo KM, Han M-K, Park JB, Chae SW, Kim U-H, Lee HC, Bay BH and Chang CF. 2000. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J. Biol. Chem. 275: 24807–24817.

    Article  PubMed  CAS  Google Scholar 

  48. Yusufi ANK, Cheng J, Thompson MA, Dousa TP, Warner GM, Walker HJ and Grande JP. 2001. cADP-ribose/ryanodine channel/Ca2+-release signal transduction pathway in mesangial cells. Am. J. Physiol. 281: F91–F102.

    Google Scholar 

  49. Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada T, Okamoto H, Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada T, et al. 1998. Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic beta-cells. J. Biol. Chem. 273: 2497–2500.

    Article  PubMed  CAS  Google Scholar 

  50. Li P-L, Tang W-X, Valdivia HH, Zou A-P and Campbell WB. 2001. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am. J. Physiol. 280:H208–H215.

    Google Scholar 

  51. Prakash YS, Kannan MS, Walseth TF and Sieck GC. 1998. Role of cyclic ADP-ribose in the regulation of [Ca2+ in porcine tracheal smooth muscle. Am. J. Physiol. 43: C1653–C1660.

    Google Scholar 

  52. Cancela JM and Petersen OH. 1998. The cyclic ADP ribose antagonist 8-NH2-cADP-ribose blocks cholecystokinin-evoked cytosolic Ca2+ spiking in pancreatic acinar cells. Pflug. Arch. 435: 746–748.

    Article  CAS  Google Scholar 

  53. Guse AH, Dasilva CP, Emmrich F, Ashamu GA, Potter BVL and Mayr GW. 1995. Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+ release in T lymphocyte cell lines. J. Immunol. 155: 3353–3359.

    PubMed  CAS  Google Scholar 

  54. Guse AH, Berg I, Dasilva CP, Potter BVL and Mayr GW. 1997. Ca2+ entry induced by cyclic ADP-ribose in intact T-lymphocytes. J. Biol. Chem. 272: 8546–8550.

    Article  PubMed  CAS  Google Scholar 

  55. Galione A, White A, Willmott N, Turner M, Potter BV and Watson SP. 1993. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 365: 456–459.

    Article  PubMed  Google Scholar 

  56. Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, Grabarek Z, Bohm A and Tang WJ. 2002. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415: 396–402.

    Article  PubMed  CAS  Google Scholar 

  57. Madden JC, Ruiz N and Caparon M. 2001. Cytolysin-mediated translocation (CMT): A functional equivalent of type III secretion in Gram-positive bacteria. Cell 104: 143–152.

    Article  PubMed  CAS  Google Scholar 

  58. Karasawa T, Takasawa S, Yamakawa K, Yonekura H, Okamoto H and Nakamura S. 1995. NAD+-glycohydrolase from Streptococcus pyogenes shows cyclic ADP-ribose forming activity. FEMS Microbiol. Lett. 130: 201–204.

    Article  PubMed  CAS  Google Scholar 

  59. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF and Lee HC. 1993. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  60. Navazio L, Bewell MA, Siddiqua A, Dickinson GD, Galione A and Sanders D. 2000. Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc. Natl. Acad. Sci. USA 97: 8693–8698.

    Article  PubMed  CAS  Google Scholar 

  61. Churchill GC and Galione A. 2001. NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J. 20: 2666–2671.

    Article  PubMed  CAS  Google Scholar 

  62. Santella L, Kyozuka K, Genazzani AA, De Riso L and Carafoli E. 2000. Nicotinic acid adenine dinucleotide phosphate-induced Ca2+ release. Interactions among distinct Ca2+ mobilizing mechanisms in starfish oocytes. J. Biol. Chem. 275: 8301–8306.

    Article  PubMed  CAS  Google Scholar 

  63. Chameau P, Van De Vrede Y, Fossier P and Baux G. 2001. Ryanodine-, IP3- and NAADP-dependent calcium stores control acetylcholine release. Pflugers Arch. 443: 289–296.

    Article  PubMed  CAS  Google Scholar 

  64. Brailoiu E, Miyamoto MD and Dun NJ. 2001. Nicotinic acid adenine dinucleotide phosphate enhances quantal neurosecretion at the frog neuromuscular junction: possible action on synaptic vesicles in the releasable pool. Mol. Pharmacol. 60: 718–724.

    PubMed  CAS  Google Scholar 

  65. Cancela JM, Churchill GC and Galione A. 1999. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature 398: 74–76.

    Article  PubMed  CAS  Google Scholar 

  66. Bak J, White P, Timár G, Missiaen L, Genazzani AA and Galione A. 1999. Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes. Curr. Biol. 9: 751–754.

    Article  PubMed  CAS  Google Scholar 

  67. Patel S, Churchill GC, Sharp T and Galione A. 2000. Widespread distribution of binding sites for the novel Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate, in the brain. J. Biol. Chem. 275: 36495–36497.

    Article  PubMed  CAS  Google Scholar 

  68. Berg I, Potter BVL, Mayr GW and Guse AH. 2000. Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an essential regulator of T-lymphocyte Ca2+-signaling. J. Cell Biol. 150:581–588.

    Article  PubMed  CAS  Google Scholar 

  69. Bak J, Billington RA, Timar G, Dutton AC and Genazzani AA. 2001. NAADP receptors are present and functional in the heart. Curr. Biol. 11: 987–990.

    Article  PubMed  CAS  Google Scholar 

  70. Mojzisova A, Krizanova O, Zacikova L, Kominkova V and Ondrias K. 2001. Effect of nicotinic acid adenine dinucleotide phosphate on ryanodine calcium release channel in heart. Eur. J. Physiol. 441: 674–677.

    Article  CAS  Google Scholar 

  71. Cheng J, Yusufi AN, Thompson MA, Chini EN and Grande JP. 2001. Nicotinic acid adenine dinucleotide phosphate: A new Ca2+ releasing agent in kidney. J. Am. Soc. Nephrol. 12: 54–60.

    PubMed  Google Scholar 

  72. Yusufi AN, Cheng J, Thompson MA, Burnett JC and Grande JP. 2002. Differential mechanisms of Ca2+ release from vascular smooth muscle cell microsomes. Exp.Biol.Md. 227: 36–44.

    CAS  Google Scholar 

  73. Yusufi AN, Cheng J, Thompson MA, Chini EN and Grande JP. 2001. Nicotinic acid-adenine dinucleotide phosphate (NAADP) elicits specific microsomal Ca2+ release from mammalian cells. Biochem. J. 353: 531–536.

    Article  PubMed  CAS  Google Scholar 

  74. Graeff R  and Lee HC. 2002. A novel cycling assay for NAADP with nanomolar sensitivity. Biochem. J. (in press).

    Google Scholar 

  75. Graeff RM, Podein RJ, Aarhus R and Lee HC. 1995. Magnesium ions but not ATP inhibit cyclic ADP-ribose-induced calcium release. Biochem. Biophys. Res. Commun. 206:786–791.

    Article  PubMed  CAS  Google Scholar 

  76. Lee HC. 1993. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J. Biol. Chem. 268: 293–299.

    PubMed  CAS  Google Scholar 

  77. Lee HC, Aarhus R, Graeff R, Gurnack ME and Walseth TF. 1994. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370: 307–309.

    Article  PubMed  CAS  Google Scholar 

  78. Lee HC Aarhus R and Graeff RM. 1995. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J. Biol. Chem. 270: 9060–9066.

    Article  PubMed  CAS  Google Scholar 

  79. Tanaka Y and Tashjian AH, Jr. 1995. Calmodulin is a selective mediator of Ca2+-induced Ca2+ release via the ryanodine receptor-like Ca2+ channel triggered by cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 92: 3244–3248.

    Article  PubMed  CAS  Google Scholar 

  80. Perez CF, Marengo JJ, Bull R and Hidalgo C. 1998. Cyclic ADP-ribose activates caffeine-sensitive calcium channels from sea urchin egg microsomes. Am. J. Physiol. 274: C430–C439.

    PubMed  CAS  Google Scholar 

  81. Lokuta AJ, Darszon A, Beltran C and Valdivia HH. 1998. Detection and functional characterization of ryanodine receptors from sea urchin eggs. J. Physiol. 510.1: 155–164.

    Google Scholar 

  82. Meszaros LG, Bak J and Chu A. 1993. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364: 76–79.

    Article  PubMed  CAS  Google Scholar 

  83. Sitsapesan R and Williams AJ. 1995. Cyclic ADP-ribose and related compounds activate sheep skeletal sarcoplasmic reticulum Ca2+ release channel. Am. J. Physiol. 268: CI 235–C1240.

    Google Scholar 

  84. Sonnleitner A, Conti A, Bertocchini F, Schindler H and Sorrentino V. 1998. Functional properties of the ryanodine receptor type 3 (Ryr3) Ca2+ release channel. EMBO J. 17: 2790–2798.

    Article  PubMed  CAS  Google Scholar 

  85. Zhang X, Wen J, Bidasee KR, Besch Jr HR, Wojcikiewicz RJ, Lee B and Rubin RP. 1999. Ryanodine and inositol trisphosphate receptors are differentially distributed and expressed in rat parotid gland. Biochem. J. 340: 519–527.

    Article  PubMed  CAS  Google Scholar 

  86. Empson RM and Galione A. 1997. Cyclic ADP-ribose enhances coupling between voltage-gated Ca2+ entry and intracellular Ca2+ release. J. Biol. Chem. 272: 20967–20970.

    Article  PubMed  CAS  Google Scholar 

  87. Hashii M, Minabe Y and Higashida H. 2000. cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L-type voltage-activated Ca2+ channels in NG108-15 neuronal cells. Biochem. J. 345: 207–215.

    Article  PubMed  Google Scholar 

  88. Lee HC. 1996. Modulator and messenger functions of cyclic ADP-ribose in calcium signaling. Re. Prog. Horm. Res. 51: 355–388.

    CAS  Google Scholar 

  89. Lee HC. 2000. NAADP: An emerging calcium signaling molecule. J. Memb. Biol. 173: 1–8.

    Article  CAS  Google Scholar 

  90. Genazzani AA, Mezna M, Dickey DM, Michelangeli F, Walseth TF and Galione A. 1997. Pharmacological properties of the Ca2Velease mechanism sensitive to NAADP in the sea urchin egg. Brit. J. Pharm. 121: 1489–1495.

    Article  CAS  Google Scholar 

  91. Lee HC and Aarhus R. 1997. Structural determinants of nicotinic acid adenine dinucleotide phosphate important for its calcium-mobilizing activity. J. Biol. Chem. 272: 20378–20383.

    Article  PubMed  CAS  Google Scholar 

  92. Aarhus R, Dickey DM, Graeff RM, Gee KR, Walseth TF and Lee HC. 1996. Activation and inactivation of Ca2+ release by NAADP+. J. Biol. Chem. 271: 8513–8516.

    Article  PubMed  CAS  Google Scholar 

  93. Aarhus R, Graeff RM, Dickey DM, Walseth TF and Lee HC. 1995. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270: 30327–30333.

    Article  PubMed  CAS  Google Scholar 

  94. Lee HC. 1991. Specific binding of cyclic ADP-ribose to calcium-storing microsomes from sea urchin eggs. J. Biol. Chem. 266: 2276–2281.

    PubMed  CAS  Google Scholar 

  95. Lee HC and Aarhus R. 2000. Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J. Cell Sci. 113: 4413–4420.

    PubMed  CAS  Google Scholar 

  96. Churchill GC and Louis CF. 1999. Imaging of intracellular calcium stores in single permeabilized lens cells. Am. J. Physiol. 276: C426–C434.

    PubMed  CAS  Google Scholar 

  97. Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R and Rutter GA. 2001. Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J. Cell Biol. 155:41–51.

    Article  PubMed  CAS  Google Scholar 

  98. Gerasimenko OV, Gerasimenko JV, Belan PV and Petersen OH. 1996. Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 84: 473–480.

    Article  PubMed  CAS  Google Scholar 

  99. Gerasimenko OV, Gerasimenko JV, Tepikin AV and Petersen OH. 1995. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell 80: 439–444.

    Article  PubMed  CAS  Google Scholar 

  100. Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS, Biswas G, Sun L, Sodam BR, Bevis PJR, Huang CLH, Epstein S, Lai FA, Avadhani NG and Zaidi M. 1999. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biol. 1: 409–414.

    Article  PubMed  CAS  Google Scholar 

  101. Santella L, Deriso L, Gragnaniello G and Kyozuka E. 1998. Separate activation of the cytoplasmic and nuclear calcium pools in maturing starfish oocytes. Biochem. Biophys. Res. Commun. 252: 1–4.

    Article  PubMed  CAS  Google Scholar 

  102. Genazzani AA and Galione A. 1996. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem. J. 315: 721–725.

    PubMed  CAS  Google Scholar 

  103. Lim D, Kyozuka K, Gragnaniello G, Carafoli E and Santella L. 2001. NAADP+ initiates the Ca2+ response during fertilization of starfish oocytes. FASEB J. 15: 2257–2267.

    Article  PubMed  CAS  Google Scholar 

  104. Aarhus R, Gee K and Lee HC. 1995. Caged cyclic ADP-ribose - synthesis and use. J. Biol. Chem. 270: 7745–7749.

    Article  PubMed  CAS  Google Scholar 

  105. Lee HC, Aarhus R, Gee KR and Kestner T. 1997. Caged nicotinic acid adenine dinucleotide phosphate — Synthesis and use. J. Biol. Chem. 272: 4172–4178.

    Article  PubMed  CAS  Google Scholar 

  106. Nusco GA, Lim D, Sabala P and Santella L. 2002. Ca2+ response to cADPr during maturation and fertilization of starfish oocytes. Biochem. Biophys. Res. Commun. 290: 1015–1021.

    Article  PubMed  CAS  Google Scholar 

  107. Leite MF, Burgstahler AD and Nathanson MH. 2002. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini. Gastroenterology 122: 415–427.

    Article  PubMed  CAS  Google Scholar 

  108. Leite MF, Dranofff JA, Gao L and Nathanson MH. 1999. Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochem. J. 337: 305–309.

    Article  PubMed  CAS  Google Scholar 

  109. Krause E, Gobel A and Schulz I. 2002. Cell side-specific sensitivities of intracellular Ca2+ stores for inositol l,4,5-trisphosphate,cyclic ADP-ribose and Nicotinic adenine dinucleotide phosphate in permeabilized pancreatic acinar cells from mouse. J. Biol. Chem. 11696–11702

    Google Scholar 

  110. Zhang XJ, Wen JY, Bidasee KR, Besch HR and Rubin RP. 1997. Ryanodine receptor expression is associated with intracellular Ca2+ release in rat parotid acinar cells. Am. J. Physiol. 42:C1306–C1314.

    Google Scholar 

  111. Putney JW, Jr. 1986. A model for receptor-regulated calcium entry. Cell Calcium 7: 1–12.

    Article  PubMed  CAS  Google Scholar 

  112. Parekh AB and Penner R. 1997. Store depletion and calcium influx. Physiol. Rev. 11: 901–930.

    Google Scholar 

  113. Kiselyov K, Shin DM, Shcheynikov N, Kurosaki T and Muallem S. 2001. Regulation of Ca2+-release-activated Ca2+ current (ICRAC) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells. Biochem. J. 360: 17–22.

    Article  PubMed  CAS  Google Scholar 

  114. Sugawara H, Kurosaki M, Takata M and Kurosaki T. 1997. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 16: 3078–3088.

    Article  PubMed  CAS  Google Scholar 

  115. Guse AH, Dasilva CP, Weber K, Ashamu GA, Potter BVL and Mayr GW. 1996. Regulation of cADP-ribose-induced Ca2+ release by Mg2+ and inorganic phosphate. J. Biol. Chem. 271: 23946–23953.

    Article  PubMed  CAS  Google Scholar 

  116. De Flora A, Franco L, Guida L, Bruzzone S, Usai C and Zocchi E. 2000. Topology of CD38. Chem. Immunol. 75: 79–98.

    Article  PubMed  Google Scholar 

  117. Kuemmerle JF and Makhlouf GM. 1995. Agonist-stimulated cyclic ADP ribose. Endogenous modulator of Ca2+-induced Ca2+ release in intestinal longitudinal muscle. J. Biol. Chem. 270: 25488–25494.

    Article  PubMed  CAS  Google Scholar 

  118. Takasawa S, Nata K, Yonekura H and Okamoto H. 1993. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science 259: 370–373.

    Article  PubMed  CAS  Google Scholar 

  119. Islam MS, Larsson O and Berggren PO. 1993. Cyclic ADP-ribose in beta cells. Science 262: 584–586.

    Article  PubMed  CAS  Google Scholar 

  120. Varadi A and Rutter GA. 2002. Dynamic imaging of endoplasmic reticulum Ca2+ concentration in insulin-secreting MIN6 cells using recombinant targeted cameleons: Roles of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2 and ryanodine receptors. Diabetes 51, Suppl 1: S190–S201.

    Google Scholar 

  121. Huang MS, Adebanjo O, Moonga BS, Goldstein S, Lai FA, Lipschitz DA and Zaidi M. 1998. Upregulation of functional ryanodine receptors during in vitro aging of human diploid fibroblasts. Biochem. Biophys. Res. Commun.  245: 50–52.

    Article  PubMed  CAS  Google Scholar 

  122. Burdakov D, Cancela JM and Petersen OH. 2001. Bombesin-induced cytosolic Ca2+ spiking in pancreatic acinar cells depends on cyclic ADP-ribose and ryanodine receptors. Cell Calcium 29: 211–216.

    Article  PubMed  CAS  Google Scholar 

  123. Burdakov D and Galione A. 2000. Two neuropeptides recruit different messenger pathways to evoke Ca2+ signals in the same cell. Curr. Biol. 10: 993–996.

    Article  PubMed  CAS  Google Scholar 

  124. Gromada J, Jorgensen TD and Dissing S. 1995. The release of intracellular Ca2+ in lacrimal acinar cells by alpha-, beta-adrenergic and muscarinic cholinergic stimulation: the roles of inositol triphosphate and cyclic ADP-ribose. Pflug. Arch. 429: 751–761.

    Article  CAS  Google Scholar 

  125. Lee HC, Aarhus R and Walseth TF. 1993. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261: 352–355.

    Article  PubMed  CAS  Google Scholar 

  126. Galione A, McDougall A, Busa WB, Willmott N, Gillot I and M. W. 1993. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science 261: 348–352.

    Article  PubMed  CAS  Google Scholar 

  127. Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, Minowa O, Kuno J, Sakakibara S, Yamada M, Yoneshima H, Miyawaki A, Fukuuchi Y, Furuichi T, Okano H, Mikoshiba K and Noda T. 1996. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379: 168–171.

    Article  PubMed  CAS  Google Scholar 

  128. Churchill GC and Galione A. 2000. Spatial control of Ca2+ signaling by nicotinic acid adenine dinucleotide phosphate diffusion and gradients. J. Biol. Chem. 275: 38687–38692.

    Article  PubMed  CAS  Google Scholar 

  129. Churchill GC and Galione A. 2001. Prolonged inactivation of nicotinic acid adenine dinucleotide phosphate-induced Ca2+ Release mediates a spatiotemporal Ca2+ memory. J. Biol. Chem. 276: 11223–11225.

    Article  PubMed  CAS  Google Scholar 

  130. Genazzani AA, Empson RM and Galione A. 1996. Unique inactivation properties of NAADP-sensitive Ca2+ release. J. Biol. Chem. 271: 11599–11602.

    Article  PubMed  CAS  Google Scholar 

  131. Churchill GC and Louis CF. 1998. Roles of Ca2+, inositol trisphosphate and cyclic ADP-ribose in mediating intercellular Ca2+ signaling in sheep lens cells. J. Cell Sci. 111: 1217–1225.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, H.C. (2002). Separate but Interacting Calcium Stores. In: Lee, H.C. (eds) Cyclic ADP-Ribose and NAADP. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0269-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0269-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4996-9

  • Online ISBN: 978-1-4615-0269-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics