ADP-Ribosyl Cyclases - A Family of cADPR and NAADP Metabolizing Enzymes



ADP-ribosyl cyclase cyclizes NAD to produce cyclic ADP-ribose (cADPR) and releases nicotinamide in the process [1]. It is a ubiquitous enzyme widely present in animal cells [1, 2] and has even been identified in Euglena, a protozoan [4]. The first cyclase purified was from Aplysia ovotestis [1, 5]. It is a soluble protein of approximately 30 kDa. Sequence comparison reveals that CD38, a lymphocyte antigen, is a mammalian homolog [6]. CD38 is a transmembrane glycoprotein of approximately 45 kDa [7]. It catalyzes not only the synthesis of cADPR but also its hydrolysis to ADP-ribose [8, 11]. Additionally, both CD38 and the Aplysia cyclase use NADP as a substrate and catalyze the exchange of the nicotinamide group with nicotinic acid, producing nicotinic acid adenine dinucleotide phosphate (NAADP) [12]. The Aplysia cyclase has been crystallized and its structure solved [13, 14]. Current knowledge of the structures of these enzymes and the novel multiplicity of their catalytic activities are described in this chapter. Since both of their products are Ca2+ messengers, this class of enzymes is crucial in mediating Ca2+ signaling functions in cells. Some of their physiological functions have now been revealed by gene ablation and are summarised here.


Cyclase Activity Wildtype Mouse Euglena Gracilis Active Site Pocket Nicotinic Acid Adenine Dinucleotide Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee HC and Aarhus R. 1991. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 2: 203–209.PubMedGoogle Scholar
  2. 2.
    Rusinko N and Lee HC. 1989. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J. Biol. Chem. 264: 11725–11731.PubMedGoogle Scholar
  3. 3.
    Lee HC and Aarhus R. 1993. Wide distribution of an enzyme that catalyzes the hydrolysis of cyclic ADP-ribose. Biochim. Biophys. Acta 1164: 68–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Masuda W, Takenaka S, Tsuyama S, Inui H, Miyatake K and Nakano Y. 1999. Purification and characterization of ADP-ribosyl cyclase from Euglena gracilis. J. Biochem. 125:449–453.PubMedCrossRefGoogle Scholar
  5. 5.
    Hellmich MR and Strumwasser F. 1991. Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul. 2: 193–202.PubMedGoogle Scholar
  6. 6.
    States DJ, Walseth TF and Lee HC. 1992. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem. Sci. 17: 495.PubMedCrossRefGoogle Scholar
  7. 7.
    Jackson DG and Bell JI. 1990. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous patern of expression during lymphocyte differentiation. J. Immunol. 144: 2811–2815.PubMedGoogle Scholar
  8. 8.
    Lee HC, Zocchi E, Guida L, Franco L, Benatti U and De Flora A. 1993. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 191: 639–645.PubMedCrossRefGoogle Scholar
  9. 9.
    Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF and Lee HC. 1993. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056–1059.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim H, Jacobson EL and Jacobson MK. 1993. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science 261: 1330–1333.PubMedCrossRefGoogle Scholar
  11. 11.
    Takasawa S, Tohgo A, Noguchi N, Koguma T, Nata K, Sugimoto T, Yonekura H and Okamoto H. 1993. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 268: 26052–26054.PubMedGoogle Scholar
  12. 12.
    Aarhus R, Graeff RM, Dickey DM, Walseth TF and Lee HC. 1995. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270: 30327–30333.PubMedCrossRefGoogle Scholar
  13. 13.
    Prasad GS, Levitt DG, Lee HC and Stout CD. 1996. Crystallization of ADP-ribosyl cyclase from Aplysia californica. Proteins 24: 138–140.CrossRefGoogle Scholar
  14. 14.
    Prasad GS, McRee DE, Stura EA, Levitt DG, Lee HC and Stout CD. 1996. Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38. Nature Struct. Biol. 3: 957–964.PubMedCrossRefGoogle Scholar
  15. 15.
    Hirata Y, Kimura N, Sato K, Ohsugi Y, Takasawa S, Okamoto H, Ishikawa J, Kaisho T, Ishihara K and Hirano T. 1994. ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1. FEBS Lett. 356: 244–248.PubMedCrossRefGoogle Scholar
  16. 16.
    Itoh M, Ishihara K, Tomizawa H, Tanaka H, Kobune Y, Ishikawa J, Kaisho T and Hirano T. 1994. Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem. Biophys. Res. Commun. 203: 1309–1317.PubMedCrossRefGoogle Scholar
  17. 17.
    Graeff RM, Walseth TF, Fryxell K, Branton WD and Lee HC. 1994. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J. Biol. Chem. 269: 30260–30267.PubMedGoogle Scholar
  18. 18.
    Graeff RM, Mehta K and Lee HC. 1994. GDP-ribosyl cyclase activity as a measure of CD38 induction by retinoic acid in HL-60 cells. Biochem. Biophys. Res. Commun. 205: 722–727.PubMedCrossRefGoogle Scholar
  19. 19.
    Graeff RM, Walseth TF, Hill HK and Lee HC. 1996. Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry 35: 379–386.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee HC, Graeff R and Walseth TF. 1995. Cyclic ADP-ribose and its metabolic enzymes. Biochimie 11: 345–355.CrossRefGoogle Scholar
  21. 21.
    Graeff RM, Franco L, Deflora A and Lee HC. 1998. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J. Biol. Chem. 273: 118–125.PubMedCrossRefGoogle Scholar
  22. 22.
    Takada T. Iida K and Moss J. 1994. Expression of NAD glycohydrolase activity by rat mamary adenocarcinoma cells transformed with rat T cell alloantigen RT6.2. J. Biol. Chem. 269: 9420–9423.PubMedGoogle Scholar
  23. 23.
    Walseth TF and Lee HC. 1993. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim. Biophys. Acta 1178: 235–242.PubMedCrossRefGoogle Scholar
  24. 24.
    Walseth TF, Aarhus R, Gurnack ME, Wong L, Breitinger H-GA, Gee KR and Lee HC. 1997. Preparation of cyclic ADP-ribose antagonists and caged cyclic ADP-ribose. Meth. Enzymol.  280: 294–305.PubMedCrossRefGoogle Scholar
  25. 25.
    Ashamu GA, Sethi JK, Galione A and Potter BVL. 1997. Roles for adenosine ribose hydroxyl groups in cyclic adenosine 5’-diphosphate ribose-mediated Ca2+ release. Biochemistry 36: 9509–9517.PubMedCrossRefGoogle Scholar
  26. 26.
    Bailey VC. Sethi JK. Galione A and Potter BVL. 1997. Synthesis of 7-deaza-8-bromo cyclic adenosine 5’-diphosphate ribose - The first hydrolysis resistant antagonist at the cADPR receptor. Chem. Commun.: 695–696.Google Scholar
  27. 27.
    Wong L, Aarhus R, Lee HC and Walseth TF. 1999. Cyclic 3-deaza-adenosine diphosphoribose: a potent and stable analog of cyclic ADP-ribose. Biochim. Biophys. Acta 1472:555–564.PubMedCrossRefGoogle Scholar
  28. 28.
    Sethi JK, Empson RM, Bailey VC, Potter BVL and Galione A. 1997. 7-Deaza-8-bromo-cyclic ADP-ribose. the first membrane-permeant, hydrolysis-resistant cyclic ADP-ribose antagonist. J. Biol. Chem. 272: 16358–16363.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee HC and Aarhus R. 1997. Structural determinants of nicotinic acid adenine dinucleotide phosphate important for its calcium-mobilizing activity. J. Biol. Chem. 272: 20378–20383.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee HC. 1997. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev. 11: 1133–1164.Google Scholar
  31. 31.
    Lee HC. 2000. Enzymatic functions and structures of CD38 and homologs. Chem. Immunol. 75: 39–59.PubMedCrossRefGoogle Scholar
  32. 32.
    Munshi C. Thiel DJ, Mathews II, Aarhus R, Walseth TF and Lee HC. 1999. Characterization of the active site of ADP-ribosyl cyclase. J. Biol. Chem. 274: 30770–30777.PubMedCrossRefGoogle Scholar
  33. 33.
    Munshi C, Aarhus R, Graeff R, Walseth TF, Levitt D and Lee HC. 2000. Identification of the enzymatic active site of CD38 by site-directed mutagenesis. J. Biol. Chem. 275: 21566–21571.PubMedCrossRefGoogle Scholar
  34. 34.
    Hussain AMM, Lee HC and Chang CF. 1998. Functional expression of secreted mouse BST-1 in yeast. Prot. Express. Purif. 12: 133–137.CrossRefGoogle Scholar
  35. 35.
    Kontani K, Nishina H, Ohoka Y, Takahashi K and Katada T. 1993. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. J. Biol. Chem 268: 16895–16898.PubMedGoogle Scholar
  36. 36.
    De Flora A, Franco L, Guida L, Bruzzone S, Usai C and Zocchi E. 2000. Topology of CD38. Chem. Immunol. 15: 79–98.CrossRefGoogle Scholar
  37. 37.
    Franco L, Guida L, Bruzzone S, Zocchi E, Usai C and Flora AD. 1998. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranesFASEB J. 12: 1507–1520.PubMedGoogle Scholar
  38. 38.
    Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A and De Flora A. 2001. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J. Biol. Chem. 276: 21642–21648.PubMedGoogle Scholar
  39. 39.
    Verderio C, Bruzzone S, Zocchi E, Fedele E, Schenk U, De Flora A and M. M. 2001. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J. Neurochem. 78: 646–657.PubMedCrossRefGoogle Scholar
  40. 40.
    Sun L, Adebanjo OA, Moonga BS, Corisdeo S, Anandatheerthavarada HK, Biswas G, Arakawa T, Hakeda Y, Koval A, Sodam B, Bevis PJR, Moser AJ, Lai FA, Epstein S, Troen BR, Kumegawa M and Zaidi M. 1999. CD38/ADP-ribosyl cyclase: A new role in the regulation of osteoclastic bone resorption. J. Cell Biol. 146: 1161–1171.PubMedCrossRefGoogle Scholar
  41. 41.
    Detlora A, Guida L, Franco L, Zocchi E, Pestarino M, Usai C, Marchetti C, Fedele E, Fontana G and Raiteri M. 1996. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum. Biochem. J. 320: 665–671.Google Scholar
  42. 42.
    Zocchi E, Franco L, Guida L, Piccini D, Tacchetti C and Deflora A. 1996. NAD+-dependent internalization of the transmembrane glycoprotein CD38 in human Namalwa ß cells. FEBS Lett. 396: 327–332.PubMedCrossRefGoogle Scholar
  43. 43.
    Zocchi E, Usai C, Guida L, Franco L, Bruzzone S, Passalacqua M and De Flora A. 1999. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NAD+ transport across cell membranes. FASEB J. 13: 273–283.PubMedGoogle Scholar
  44. 44.
    Yamada M, Mizuguchi M, Otsuka N, Ikeda K and Takahashi H. 1997. Ultrastructural localization of CD38 immunoreactivity in rat brain. Brain Res. 756: 52–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS, Biswas G, Sun L, Sodam BR, Bevis PJR, Huang CLH, Epstein S, Lai FA, Avadhani NG and Zaidi M. 1999. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biol. 1:409–414.PubMedCrossRefGoogle Scholar
  46. 46.
    Khoo KM, Han M-K, Park JB, Chae SW, Kim U-H, Lee HC, Bay BH and Chang CF. 2000. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J. Biol. Chem. 275: 24807–24817.PubMedCrossRefGoogle Scholar
  47. 47.
    Khoo KM and Chang CF. 2001. Identification and characterization of nuclear CD38 in the rat spleen. Int. J. Biochem. Cell Biol. 34: 43–54.CrossRefGoogle Scholar
  48. 48.
    Santella L, Deriso L, Gragnaniello G and Kyozuka E. 1998. Separate activation of the cytoplasmic and nuclear calcium pools in maturing starfish oocytes. Biochem. Biophys. Res. Commun. 252: 1–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Reinherz EL, Kung PC, Goldstein G, Levey RH and Schlossman SF. 1980. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl. Acad. Set. USA 77: 1588–1592.CrossRefGoogle Scholar
  50. 50.
    Zocchi E, Franco L, Guida L, Benatti U, Bargellesi A, Malavasi F, Lee HC and De Flora A. 1993. A single protein immunologically identified as CD38 displays NADV glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 196: 1459–1465.PubMedCrossRefGoogle Scholar
  51. 51.
    Fernandez JE, Deaglio S, Donati D, Svoboda-Beusan I, Corno F, Aranega A, Forni M, Falini B and Malavasi F. 1998. Analysis of the distribution of human CD38 and of its ligand CD31 in normal tissues. J. Biol. Regul.Homeostatic Agents 12: 81–91.Google Scholar
  52. 52.
    Khoo KM and Chang CF. 1999. Characterization and localization of CD38 in the vertebrate eye. Brain Res. 821: 17–25.PubMedCrossRefGoogle Scholar
  53. 53.
    Kato I, Takasawa S, Akabane A, Tanaka O, Abe H, Takamura T, Suzuki Y, Nata K, Yonekura H, Yoshimoto T and et al. 1995. Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells. Enhanced insulin secretion in CD38-expressing transgenic mice. J. Biol. Chem. 270: 30045–30050.PubMedCrossRefGoogle Scholar
  54. 54.
    Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S and Okamoto H. 1998. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i and insulin secretion. J. Biol. Chem. 274: 1869–1872.CrossRefGoogle Scholar
  55. 55.
    Ishihara K and Hirano T. 2000. BST-1/CD157 regulates the humoral immune responses in vivo. Chem. Immunol. 75: 235–255.PubMedCrossRefGoogle Scholar
  56. 56.
    Itoh M, Ishihara K, Hiroi T, Ok Lee B, Maeda H, Iijima H, Yanagita M, Kiyono H and Hirano T. 1998. Deletion of bone marrow stromal cell antigen-1 (CD 157) gene Impaired systemic thymus independent-2 antigen-induced IgG3 and mucosal TD antigen-elicited IgA responses. J Immunol 161: 3974–3983.PubMedGoogle Scholar
  57. 57.
    Mothet JP, Fossier P, Meunier FM Stinnakre J, Tauc L and Baux G. 1998. Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia. J. Physiol. 507.2: 405–414.PubMedCrossRefGoogle Scholar
  58. 58.
    Chameau P, Van De Vrede Y, Fossier P and Baux G. 2001. Ryanodine-, IP3- and NAADP-dependent calcium stores control acetylcholine release. Pflugers Arch. 443: 289–296.PubMedCrossRefGoogle Scholar
  59. 59.
    Masuda W, Takenaka S, Inageda K, Nishina H, Takahashi K, Katada T, Tsuyama S, Inui H, Miyatake K and Nakano Y. 1997. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena Gracilis. FEBS Lett. 405: 104–106.PubMedCrossRefGoogle Scholar
  60. 60.
    Masuda W, Takenaka S, Tsuyama S, Tokunaga M, Yamaji R, Inui H, Miyatake K and Nakano Y. 1997. Inositol 1,4.5-trisphosphate and cyclic ADP-ribose mobilize Ca2+ in a protist, Euglena Gracilis. Comp. Biochem. Physiol. 118: 279–283.Google Scholar
  61. 61.
    Koradi R, Billeter M and Wuthrich K. 1996. MOLMOL: a program for display and analysis of macromolecular structures. J. Mot. Graphics 14: 51–55.CrossRefGoogle Scholar
  62. 62.
    Lee HC, Aarhus R and Levitt D. 1994. The crystal structure of cyclic ADP-ribose. Nature Struct Biol. 1:143–144.Google Scholar
  63. 63.
    Bolduc JM, Dyer DH, Scott WG, Singer P, Sweet RM, Koshland DE and Stoddard BL. 1995. Mutagenesis and Laue structures of enzyme intermediates-Isocitrate dehydrogenase. Science 268: 1312–1318.PubMedCrossRefGoogle Scholar
  64. 64.
    Munshi C, Baumann C, Levitt D, Bloomfield VA and Lee HC. 1998. The homo-dimeric form of ADP-ribosyl cyclase in solution. Biochim. Biophys. Acta 1388: 428–436.PubMedCrossRefGoogle Scholar
  65. 65.
    Sauve AA, Deng HT, Angeletti RH and Schramm VL. 2000. A covalent intermediate in CD38 is responsible for ADP-ribosylation and cyclization reactions. J. Am. Chem. Soc. 122:7855–7859.CrossRefGoogle Scholar
  66. 66.
    Graeff R, Munshi C, Aarhus R, Johns M and Lee HC. 2001. A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities. J. Biol. Chem. 276: 12169–12173.PubMedCrossRefGoogle Scholar
  67. 67.
    Tohgo A, Munakata H, Takasawa S, Nata K, Akiyama T, Hayashi N and Okamoto H. 1997. Lysine 129 of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) participates in the binding of ATP to inhibit the cyclic ADP-ribose hydrolase. J. Biol. Chem. 272: 3879–3882.PubMedCrossRefGoogle Scholar
  68. 68.
    Tohgo A, Takasawa S, Noguchi N, Koguma T, Nata K, Sugimoto T, Furuya Y, Yonekura H and Okamoto H. 1994. Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J. Biol. Chem. 269: 28555–28557.PubMedGoogle Scholar
  69. 69.
    Yamamoto-Katayama S, Sato A, Ariyoshi M, Suyama M, Ishihara K, Hirano T, Nakamura H, Morikawa K and Jingami H. 2001. Site-directed removal of N-glycosylation sites in BST-1/CD157: effects on molecular and functional heterogeneity. Biochem. J. 357: 385–392.PubMedCrossRefGoogle Scholar
  70. 70.
    Yamamoto-Katayama S, Ariyoshi M, Ishihara K, Hirano T, Jingami H and Morikawa K. 2002. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. J. Mol. Biol. 316: 711–723.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee HC. 1999. A unified mechanism for enzymatic synthesis of two calcium messengers, cyclic ADP-ribose and NAADP. Biol. Chem. 380: 785–793.PubMedCrossRefGoogle Scholar
  72. 72.
    Muller-Steffner HM, Augustin A and Schuber F. 1996. Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase. J. Biol. Chem. 271: 23967–23972.PubMedCrossRefGoogle Scholar
  73. 73.
    Sauve AA, Munshi C, Lee HC and Schramm VL. 1998. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry 37: 13239–13249.PubMedCrossRefGoogle Scholar
  74. 74.
    Deterre P, Berthelier V, Bauvois B, Dalloul A, Schuber F and Lund F. 2000. CD38 in T-and B-cell functions. Chem. Immunol. 75: 146–168.PubMedCrossRefGoogle Scholar
  75. 75.
    Campana D, Suzuki T, Todisco E and Kitanaka A. 2000. CD38 in hematopoiesis. Chem. Immunol. 75: 169–188.PubMedCrossRefGoogle Scholar
  76. 76.
    Morra M, Zubiaur M, Terhorst C, Sancho J and Malavasi F. 1998. CD38 is functionally dependent on the TCR/CD3 complex in human T cells. FASEB J. 12: 581–592.PubMedGoogle Scholar
  77. 77.
    Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, Dianzani U, Stockinger H and Malavasi F. 1998. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J. Immunol. 160: 395–402.PubMedGoogle Scholar
  78. 78.
    Deaglio S, Mallone R, Baj G, Arnulfo A, Surico N, Dianzani U, Mehta K and Malavasi F. 2000. CD38/CD31, a receptor/1 igand system ruling adhesion and signaling in human leukocytes. Chem. Immunol. 75: 99–120.PubMedCrossRefGoogle Scholar
  79. 79.
    Funaro A, De Monte LB, Dianzani U, Forni M and Malavasi F. 1993. Human CD38 is associated to distinct molecules which mediate transmembrane signaling in different lineages. Eur. J. Immunol. 23: 2407–2411.PubMedCrossRefGoogle Scholar
  80. 80.
    Deaglio S, Zubiaur M, Gregorini A, Bottarel F, Ausiello CM, Dianzani U, Sancho J and Malavasi F. 2002. Human CD38 and CD 16 are functionally dependent and physically associated in natural killer cells. Blood 99: 2490–2498.PubMedCrossRefGoogle Scholar
  81. 81.
    Lund FE, Muller-Steffner HM, Yu NX, Stout CD, Schuber F and Howard MC. 1999. CD38 signaling in B lymphocytes is controlled by its ectodomain but occurs independently of enzymatically generated ADP-ribose or cyclic ADP-ribose. J. Immunol. 162:2693–2702.PubMedGoogle Scholar
  82. 82.
    Zocchi E, Daga A, Usai C, Franco L, Guida L, Bruzzone S, Costa A, Marchetti C and Deflora A. 1998. Expression of CD38 increases intracellular calcium concentration and reduces doubling time in HeLa and 3T3 cells. J. Biol. Chem. 273: 8017–8024.PubMedCrossRefGoogle Scholar
  83. 83.
    Cockayne DA, Muchamuel T, Grimaldi JC, Mullersteffner H, Randall TD, Lund FE, Murray R, Schuber F and Howard MC. 1998. Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses. Blood 92: 1324–1333.PubMedGoogle Scholar
  84. 84.
    Partida-Sanchez S, Cockayne D, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodricj S, Howard M, Harmsen A, Randall T and Lund FE. 2001. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med. 7: 1209–1216.PubMedCrossRefGoogle Scholar
  85. 85.
    Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, Sato M, Ohsaga A, Sato K, Shirato K, Okamoto H and Maruyama Y. 2001. Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J. Biol. Chem. 276: 649–655.PubMedCrossRefGoogle Scholar
  86. 86.
    Takasawa S, Nata K, Yonekura H and Okamoto H. 1993. Cyclic ADP-ribose in ß cells. Science 262: 585.PubMedCrossRefGoogle Scholar
  87. 87.
    Okamoto H. 1999. The CD38-cyclic ADP-ribose signaling system in insulin secretion. Mol Cell. Biochem. 193: 115–118.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations