Cyclic ADP-Ribose and Vasomotor Response



Vascular smooth muscle (VSM) usually exists in a partially contracted state, from which it can contract further or relax in response to different physiological or pathological stimulations. This contracted state of blood vessels and their contracting and relaxing response to stimuli are often referred to as “vascular tone” and “vasomotor response,” respectively. Numerous studies indicate that cytosolic free calcium concentrations ([Ca2+]) in VSM cells play an essential role in mediating or modulating both vascular tone and vasomotor response in a variety of blood vessels. It is well recognized that the rise in intracellular [Ca2+] initiates and maintains contraction in VSM, which importantly determines the peripheral vascular resistance and blood pressure [1–5].


Release Channel Ryanodine Receptor Vasomotor Response Coronary Arterial Smooth Muscle Coronary Vascular Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berridge MJ. 1997. Elementary and global aspects of calcium signalling. J. Physiol. 499: 291–306.PubMedGoogle Scholar
  2. 2.
    Berridge MJ. 1994. The biology and medicine of calcium signaling. Mol. Cellul. Endocrinol. 98: 119–124.CrossRefGoogle Scholar
  3. 3.
    Galione A and Sethi J. 1996. Cyclic ADP-ribose and calcium signaling. In Biochemistry of smooth muscle contraction, pp. 295–305. ed. M Barany. Academic Press.Google Scholar
  4. 4.
    Himpens B, Missiaen L and Casteels R. 1995. Ca2+ homeostasis in vascular smooth muscle. J. Vase. Res. 32: 207–219.CrossRefGoogle Scholar
  5. 5.
    Nelson MT, Patlak JB, Worley JF and Standen NB. 1990. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am. J. Physiol. 259: C3–C18.PubMedGoogle Scholar
  6. 6.
    Fasolato C, Innocenti B and Pozzan T. 1994. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol. Sci. 15: 77–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Petersen OH. 1996. New aspects of cytosolic calcium signaling. News Physiol. Sci. 11: 13–17.Google Scholar
  8. 8.
    Li N, Zou AP, Ge ZD, Campbell WB and Li P-L. 2001. Effect of nitric oxide on calcium-induced calcium release in coronary arterial smooth muscle. Gen. Pharmacol Vase. System 35: 37–45.CrossRefGoogle Scholar
  9. 9.
    Kannan MS, Prakash YS, Johnson DE and Sieck GC. 1997. Nitric oxide inhibits calcium release from sarcoplasmic reticulum of porcine tracheal smooth muscle cells. Am. J. Physiol. 272:L1–L7.PubMedGoogle Scholar
  10. 10.
    Yu J-Z, Zhang DX, Zou AP, Campbell WB and Li P-L. 2000. Nitric oxide inhibits intracellular calcium mobilization through the cyclic ADP-ribose signaling pathway in bovine coronary arterial smooth muscle cells. Am. J. Physiol. 279: 873–881.Google Scholar
  11. 11.
    Lee HC, Walseth TF, Bran GT, Hayes RN and Clapper DL. 1989. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+ mobilizing activity. J. Biol. Chem. 264: 1608–1615.PubMedGoogle Scholar
  12. 12.
    Beers K, Chini EN, Lee HC and Dousa TP. 1995. Metabolism of cyclic ADP-ribose in opossum kidney renal epithelial cells. Am. J. Physiol. 268: C741–C746.PubMedGoogle Scholar
  13. 13.
    Koshiyama HH., Lee HC and Tashjian AH. 1991. Novel mechanism of intracellular calcium release in pituitary cell. J. Biol. Chem. 266:. 16985–16988.PubMedGoogle Scholar
  14. 14.
    Galione A, Lee HC and Busa WB. 1991. Ca2+-induced Ca2+ release in sea urchin egg homogenates and its modulation by cyclic ADP-ribose. Science 253: 1143–1146.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee HC and Aarhus R. 1993. Wide distribution of an enzyme that catalyzes the hydrolysis of cyclic ADP-ribose. Biochim. Biophys. Acta 1164: 68–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Takesawa S, Nata K, Yonekura H and Okamoto H. 1993. Cyclic ADP-ribose in insulin secretion from pancreatic p cells. Science 259: 370–373.CrossRefGoogle Scholar
  17. 17.
    Lee HC. 1994. A signaling pathway involving cyclic ADP-ribose, cGMP, and nitric oxide. News Physiol. Sci. 9: 134–137.Google Scholar
  18. 18.
    Li N, Teggatz EG, Li P-L, Allaire R and Zou AP. 2000. Formation and actions of cyclic ADP-ribose in renal microvessels. Microvasc. Res. 60: 149–159.PubMedCrossRefGoogle Scholar
  19. 19.
    Li P-L, Zou AP and Campbell WB. 1997. Metabolism and actions of ADP-ribose in coronary arterial smooth muscle. Adv. Exp. Med. Biol. 419: 437–441.PubMedCrossRefGoogle Scholar
  20. 20.
    Li P-L, Zou AP and Campbell WB. 1998. Regulation of the KCa channel activity by cyclic ADP-riboses and ADP-ribose in bovine coronary arterial smooth muscle. Am. J. Physiol. 275: H1002–1010.PubMedGoogle Scholar
  21. 21.
    Franco L, Zocchi E, Calder L, Guida L, Benatti U and De Flora A. 1994. Self-aggregation of the transmembrane glycoprotein CD38 purified from human erythrocytes. Biochem. Biophys. Res. Commun. 202: 1710–1715.PubMedCrossRefGoogle Scholar
  22. 22.
    Malawasi F, Funaro A, Roggero S, Horenstein A, Calosso L and Mehta K. 1994. Human CD38: a glycoprotein in search of a function. Immunol. Today 15: 95–97.CrossRefGoogle Scholar
  23. 23.
    Zocchi E, Franco L, Guida L, Benatti U, Bragellesi MF, Lee HC and De Flora A. 1993. A single protein immunologically identified as CD38 displays NAD glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 196: 1459–1465.PubMedCrossRefGoogle Scholar
  24. 24.
    Zocchi E, Franco L, Guida L, Calder L and De Flora A. 1995. Self-aggregation of purified and membrane-bound erythrocyte CD38 induces extensive decrease of its ADP-ribosyl cyclase activity. FEBS Lett. 359: 35–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Zocchi E, Usai C, Guida L, Franco L, Bruzzone S, Passalacqua M and De Flora A. 1999. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization role of NADV transport across cell membranes. FASEB J. 13: 273–283.PubMedGoogle Scholar
  26. 26.
    Li P-L, Zhang DX, Zhi-Dong Ge and Campbell WB. 2002. Role of ADP-ribose in mediating 11,12-EET-induced activation of KCa channels in coronary arterial smooth muscle cells. Am. J. Physiol.-Heart Circ. Physiol. 282: (in press).Google Scholar
  27. 27.
    Zhang DX, Zou AP and P-L Li. 2001. ADP-ribose dilates coronary arteries through apyrase-mediated metabolism. J. Vase. Res. 38: 64–72,CrossRefGoogle Scholar
  28. 28.
    Berruet L, Muller-Steffner H and Schuber F. 1998. Occurrence of bovine spleen CD38/NAD+ glycohydrolase disulfide-linked dimer. Biochem. Mol. Biol. Int. 46: 847–855.PubMedGoogle Scholar
  29. 29.
    Chini EN, Beers KW, Chini CS and Dousa TP. 1995. Specific modulation of cyclic ADP-ribose-induced Ca2+ release by polyamines. Am. J. Physiol. 269: C1042–C1047.PubMedGoogle Scholar
  30. 30.
    Galione A, White H, Willmott N, Turner M, Potter BVL and Watson SP. 1993. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 365: 456–459.PubMedCrossRefGoogle Scholar
  31. 31.
    Takasawa S, Tohgo A, Noguchi N, Koguma T, Nata K, Sugimoto T, Yonekura H and Okamoto H. 1993. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 268: 26052–26054.PubMedGoogle Scholar
  32. 32.
    Tohgo A, Munakata H, Takasawa S, Nata K, Akiyama T, Hayashi N and Okamoto H. 1997. Lysine 129 of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) participates in the binding of ATP to inhibit the cyclic ADP-ribose hydrolase. J. Biol. Chem. 272: 3879–3882.PubMedCrossRefGoogle Scholar
  33. 33.
    Vu CQ, Coyle DL, Tai H-H, Jacobson EL and Jacobson MK. 1997. Intramolecular ADP-ribose transfer reaction and calcium signalling. Adv. Exp. Med. Biol. 419: 381–388.PubMedCrossRefGoogle Scholar
  34. 34.
    Whalley T, McDougall A, Crossley L, Swann K and Whitaker M. 1992. Internal calcium release and activation of sea urchin eggs by cGMP are independent of the phosphoinositide signaling pathway. Mol. Biol. Cell 3: 373–383.PubMedGoogle Scholar
  35. 35.
    Chakraborti T, Ghosh SK, Michael JR, Batabyal SK and Chakraborti S. 1998. Targets of oxidative stress in cardiovascular system. Mol. Cell. Biochem. 187: 1–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Clementi E. 1998. Role of nitric oxide and its intracellular signalling pathways in the control of Ca2+ homeostasis. Biochem. Pharmacol. 55: 713–718.PubMedCrossRefGoogle Scholar
  37. 37.
    Van Zwieten PA and Doods HN. 1995. Muscarinic receptors and drugs in cardiovascular medicine. Cardiovas. Drugs Ther. 9: 159–167.CrossRefGoogle Scholar
  38. 38.
    Darley-Usmar VM, McAndrew J, Patel R, Moellering D, Lincoln TM, Jo H, Cornwell T, Digerness S and White CR. 1997. Nitric oxide, free radicals and cell signalling in cardiovascular disease. Biochem. Soc. Transact. 25: 925–929.Google Scholar
  39. 39.
    Suzuki YJ, Forman HJ and Sevanian A. 1997. Oxidants as stimulators of signal transduction. Free Radical Biol. Med. 22: 269–285.CrossRefGoogle Scholar
  40. 40.
    Kawakami M and Okabe E. 1998. Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel. Mol. Pharmacol. 53:497–503.PubMedGoogle Scholar
  41. 41.
    Chidambaram N, Wong ET and Chang CF. 1998. Differential oligomerization of membrane-bound CD38/ADP-ribosyl cyclase in porcine heart microsomes. Biochem. Mol. Biol. Intl. 4: 1225–1233.Google Scholar
  42. 42.
    Guida L, Franco L, Zocchi E and De Flora A. 1995. Structural role of disulfide Bridges in the cyclic ADP-ribose related bifunctional ectoenzyme CD38. FEBS Lett. 369: 481–484.CrossRefGoogle Scholar
  43. 43.
    Munshi C, Braumann C, Levitt D, Bloomfield VA and Lee HC. 1998. The homo-dimeric form of ADP-ribosyl cyclase in solution. Biochim. Biophys. Acta 1388: 428–436.PubMedCrossRefGoogle Scholar
  44. 44.
    Shubinsky G and Schlesinger M. 1997. The CD38 lymphocyte differentiation marker: new insight into its ectoenzymatic activity and its role as a signal transducer. Immunity 7: 315–324,PubMedCrossRefGoogle Scholar
  45. 45.
    Tohgo A, Takasawa S, Noguchi N, Koguma T, Nata K, Sugimoto T, Furuya Y, Yonekura H and Okamoto H. 1994. Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J. Biol. Chem. 269: 28555–28557.PubMedGoogle Scholar
  46. 46.
    Prasad GS, McRee DE., Stura EA, Levitt DG, Lee HC and Stout CD. 1996. Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ecto-enzyme CD38. Nature Struct. Biol. 3: 957–964.PubMedCrossRefGoogle Scholar
  47. 47.
    Higashida H. 1997. ADP-ribosyl cyclase coupled with receptors via G-proteins. FEBS Lett. 418:355–356.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee HC, Aarhus R and Walseth TF. 1993. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261: 352–355.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee HC, Walseth TF, Aarhus R and Levitt D. 1993. Cyclic ADP-ribose as a second messenger for mobilizing intracellular calcium stores. J. Reprod. Devel. 39: 64–69.Google Scholar
  50. 50.
    Kannan MS, Fenton AM, Prakash YS and Sieck GC. 1996. Cyclic ADP-ribose stimulates sarcoplasmic reticulum calcium release in porcine coronary artery smooth muscle. Am. J. Physiol. 270: H801–H805.PubMedGoogle Scholar
  51. 51.
    Geiger J, Zou AP, Campbell WB and Li P-L. 2000. Inhibition of cyclic ADP-ribose formation produces vasodilation in bovine coronary arteries. Hypertension 35: 397–402.PubMedCrossRefGoogle Scholar
  52. 52.
    Imaizumi Y, Ohi Y, Yamamura H, Ohya S, Muraki K and Watanabe M. 1999. Ca2+ spark as a regulator of ion channel activity. Jpn. J. Pharmacol. 80: 1–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Jaggar JH, Wellman GC, Heppner TJ, Porter VA, Perez GJ, Gollasch M, Kleppisch T, Rubart M, Stevenson AS, Lederer WJ, Knot HJ, Bonev AD and Nelson MT. 1998. Ca2+ channels, ryanodine receptors and Ca2+-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol. Scand. 164: 577–587.PubMedCrossRefGoogle Scholar
  54. 54.
    Jaggar JH, Porter VA, Lederer WJ and Nelson MT. 2000. Calcium sparks in smooth muscle. Am. J. Physiol. (Cell Physiol.) 278: C235–C256.Google Scholar
  55. 55.
    Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ and Lederer WJ. 1995. Relaxation of arterial smooth muscle by calcium sparks. Science 270: 633–637.PubMedCrossRefGoogle Scholar
  56. 56.
    Cui Y, Galione A and Terrar DA. 1999. Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochem. J. 342: 269–273.PubMedCrossRefGoogle Scholar
  57. 57.
    Bychkov R, Gollasch M, Ried C, Luft FC and Haller H. 1997. Regulation of spontaneous transient outward potassium currents in human coronary arteries. Circ. 95: 503–510.CrossRefGoogle Scholar
  58. 58.
    Li P-L, Tang WX, Valdivia HH, Zou AP and Campbell WB. 2001. Cyclic ADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am. J. Physiol. 280:H208–H215.Google Scholar
  59. 59.
    Tang WX, Cheng YF, Zou AP, Campbell WB and Li P-L. 2002. Role of FKBP 12.6 in cADPR-induced activation of reconstituted ryanodine receptors from coronary arterial smooth muscle. Am. J. Physiol. (in press).Google Scholar
  60. 60.
    Bolton TB and Gordienko DV. 1998. Confocal imaging of calcium release events in single smooth muscle cells. Acta Physiol. Scand. 164: 567–575.PubMedCrossRefGoogle Scholar
  61. 61.
    Ruehlmann DO, Lee CH, Poburko D and van Breemen C, 2000. Asynchronous Ca2+ waves in intact venous smooth muscle. Circ. Res. 86: E72–E79.PubMedCrossRefGoogle Scholar
  62. 62.
    Empson RM and Galione A. 1997. Cyclic ADP-ribose enhances coupling between voltage-gated Ca2+ entry and intracellular Ca2+ release. J. Biol. Chem. 272: 20967–20970.PubMedCrossRefGoogle Scholar
  63. 63.
    Galione A. 1992. Ca2+-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol. Sci. 13: 304–306.PubMedCrossRefGoogle Scholar
  64. 64.
    Galione A, Lee HC and Busa WB. 1991. Ca2+-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253: 1143–1146.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee HC. 1993. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J. Biol. Chem. 268: 293–299.PubMedGoogle Scholar
  66. 66.
    Rakovic S, Galione A, Ashamu GA, Ptter BVL and Terrar DA. 1996. A specific cyclic ADP-ribose antagonist inhibits cardiac excitation-contraction coupling. Curr. Biol. 6: 989–996.PubMedCrossRefGoogle Scholar
  67. 67.
    Kamishima T and McCarron JG. 1997. Regulation of the cytosolic Ca2+ concentration by Ca2+ stores in single smooth muscle cells from rat cerebral arteries. J. Physiol. 501: 497–508.PubMedCrossRefGoogle Scholar
  68. 68.
    Vandier C, Delpech M., Rebocho M and Bonnet P. Hypoxia enhances agonist-induced pulmonary arterial contraction by increasing calcium sequestration. Am. J. Physiol. 1997; 273, H1075–1081.PubMedGoogle Scholar
  69. 69.
    Zhang DX, MD Harrison and P-L Li. 2001. Role of calcium-induced calcium release in the control of intracellular calcium concentration and contraction of coronary arterial smooth muscle. FASEB J. 15: A1115.CrossRefGoogle Scholar
  70. 70.
    Beers KW, Chini EN and Dousa TP. 1995. All-trans-retinoic acid stimulates synthesis of cyclic ADP-ribose in renal LLC-PK1 cells. J. Clin. Invest. 95:2395–2390.CrossRefGoogle Scholar
  71. 71.
    Jabr RI, Toland H, Gelband CH, Wang XX and Hume JR. 1997. Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery. Br. J. Pharmacol. 122: 21–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Chini EN, de Toledo FG, Thompson MA and Dousa TP. 1997. The effect of estrogen upon cyclic ADP-ribose metabolism: beta-estradiol stimulates ADP ribosyl cyclase in rat uterus. Proc. Natl. Acad. Sci. USA 94: 5872–5876.PubMedCrossRefGoogle Scholar
  73. 73.
    Kannan MS, Prakash YS, Brenner T, Mickelson JR and Sieck GC. 1997. Role of ryanodine receptor channels in Ca2+ oscillations of porcine tracheal smooth muscle. Am. J. Physiol. 272: L659–L664.PubMedGoogle Scholar
  74. 74.
    De Toledo FG, Cheng J and Dousa TP. 1997. Retinoic acid and triiodothyronine stimulate ADP-ribosyl cyclase activity in rat vascular smooth muscle cells. Biochem. Biophy. Res. Commun. 238: 847–850.CrossRefGoogle Scholar
  75. 75.
    Morita K, Kitayama S and Dohi T. 1997. Stimulation of cyclic ADP-ribose synthesis by acetylcholine and its role in catecholamine release in bovine adrenal chromaffin cells. J. Biol. Chem. 272: 21002–21009.PubMedCrossRefGoogle Scholar
  76. 76.
    Tripathy A, Resch W, Xu L, Valdivia HH and Meissner G. 1998. Imperatoxin A induced subconductance states in Ca2+ release channels (ryanodine receptors) of cardiac and skeletal muscle. J. Gen. Physiol. 111: 679–690.PubMedCrossRefGoogle Scholar
  77. 77.
    Ge ZD, Zou AP, Campbell WB and Li P-L. 2001. Cyclic ADP-ribose mediates the action of muscarinic mj receptors in coronary arterial smooth muscle. Hypertension 38: 160 (Abstract).Google Scholar
  78. 78.
    Bernstein G. 1992. Reconstitution of agonist-stimulated phosphatidyl-inositol 4,5-biphosphate hydrolysis using purified ml muscarinic receptor, Gq/11, and phospholipase C-beta 1. J. Biol. Chem. 267: 8081–8088.Google Scholar
  79. 79.
    Higashida H, Yokoyama S, Hashii M, Taketo M, Higashida M, Takayasu T, Ohshima T, Takasawa S, Okamoto H and Noda M. 1997. Muscarinic receptor-mediated dual regulation of ADP-ribosyl cyclase in NG108-15 neuronal cell membranes. J. Biol. Chem. 272:31272–31277.PubMedCrossRefGoogle Scholar
  80. 80.
    Burns DM, Ruddock MW, Walker MD, Allen JM, Kennovin GD and Hirst DG. 1999. Nicotinamide-inhibited vasoconstriction: Lack of dependence on agonist signaling pathways. Eur. J. Pharmacol. 374: 213–220.PubMedCrossRefGoogle Scholar
  81. 81.
    Graeff RM, Franco L, De Flora A and Lee HC. 1998. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J. Biol. Chem. 273: 118–125.PubMedCrossRefGoogle Scholar
  82. 82.
    Carrier GO, Fuchs LC, Winecoff AP, Giulumian AD and White RE. 1997. Nitrovasodilators relax messenteric microvessels by cGMP-induced stimulation of Ca-activated K channels. Am. J. Physiol. 273: H76–H84.PubMedGoogle Scholar
  83. 83.
    Bolotina VM, Najibi S, Palacino JJ, Pagano PJ and Cohen RA. 1994. Nitric oxide directly activates potassium channels in vascular smooth muscle. Nature. 368: 850–853.PubMedCrossRefGoogle Scholar
  84. 84.
    Sun CW, Alonso-Galicia M, Taheri MR, Falck JR, Harder DR and Roman RJ. 1998. Nitric oxide-20-hydroxy-eicosatetraenoic acid interaction in the regulation of K+channel activity and vascular tone in renal arterioles. Circ. Res. 83: 1069–1079.PubMedCrossRefGoogle Scholar
  85. 85.
    Willmott N, Sethi JK, Walseth TF, Lee HC, White AM and Galione A. 1996. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J. Biol. Chem. 271: 3699–3705.PubMedCrossRefGoogle Scholar
  86. 86.
    Campbell WB, Gebremedhin D, Pratt PF and Harder DR. 1996. Identification of epoxyeicosatrienoic acid as endothelium-derived hyperpolarizing factors. Circ. Res. 78: 415–423.PubMedCrossRefGoogle Scholar
  87. 87.
    Galione A, Cui Y, Empson R. lino S. Wilson H and Terrar D. 1998. Cyclic ADP-ribose and the regulation of calcium-induced calcium release in eggs and cardiac myocytes. Cell Biochem. Biophy. 28: 19–30.CrossRefGoogle Scholar
  88. 88.
    Lahouratate P, Guibert J and Faivre JF. 1997. cADP-ribose releases Ca2+ from cardiac sarcoplasmic reticulum independently of ryanodine receptor. Am. J. Physiol. 273: H1082–H1089.PubMedGoogle Scholar
  89. 89.
    Sitsapesan R, McGarry SJ and William AJ. 1994. Cyclic ADP-ribose compete with ATP for the adenine nucleotide binding site on the cardiac ryanodine receptor Ca2+-release channel. Circ. Res. 75: 596–600.PubMedCrossRefGoogle Scholar
  90. 90.
    Lee HC, Aarhus R, Gurnack ME and Walseth TF. 1994. Cyclic ADP-ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370: 307–309.PubMedCrossRefGoogle Scholar
  91. 91.
    Ito K, Ikemoto T and Takakura S. 1991. Involvement of Ca2+ influx-induced Ca2+ release in contractions of intact vascular smooth muscles. Am. J. Physiol. 261: H1464–H1470.PubMedGoogle Scholar
  92. 92.
    Asano M, Kuwako M, Nomura Y, Suzuki Y, Shibuya M, Sugita K and Ito K. 1996. Possible mechanism of the potent vasoconstrictor responses to ryanodine in dog cerebral arteries. Eur. J. Pharmacol. 311: 53–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Knot HJ, Standen NB and Nelson MT. 1998. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels. J. Physiol. 508:211–221.PubMedCrossRefGoogle Scholar
  94. 94.
    Lesh RE, Nixon GF, Fleischer S, Airey J A, Somlyo AP and Somlyo AV. 1998. Localization of ryanodine receptors in smooth muscle. Circ. Res. 82: 175–185.PubMedCrossRefGoogle Scholar
  95. 95.
    Meszaros LG, Bak J and Chiu A. 1993. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364: 76–79,PubMedCrossRefGoogle Scholar
  96. 96.
    Franzini-Armstrong C and Protasi F. 1997. Ryanodine receptors of striated muscles: A complex channel capable of multiple interactions. Pharmacol. Rev. 77: 699–729.Google Scholar
  97. 97.
    Herrmann-Frank A, Darling E and Meissner G. 1991. Functional characterization of the Ca2+-gated Ca2+ release channel of vascular smooth muscle sarcoplasmic reticulum. Pfluger Arch. 418:353–359.CrossRefGoogle Scholar
  98. 98.
    Lee HC, Aarhus R and Gruff RM. 1995. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J. Biol. Chem. 270: 9060–9066.PubMedCrossRefGoogle Scholar
  99. 99.
    Lokuta AJ, Meyers MB, Sander PR, Fishman GI and Valdivia HH. 1997. Modulation of cardiac ryanodine receptors by sorcin. J. Biol. Chem. 272: 25333–25338PubMedCrossRefGoogle Scholar
  100. 100.
    Valdivia, HH. 1998. Modulation of intracellular Ca2+ level in the heart by sorcin and FKBP 12, two accessory proteins of ryanodine receptors. Trends Pharmacol. Sci. 19: 479–482.PubMedCrossRefGoogle Scholar
  101. 101.
    Noguchi N, Takasawa S, Nata K, Tohgo A, Kato I, Ikehata F, Yonekura H and Okamoto H. 1997. Cyclic ADP-ribose binding to FK 506-binding protein 12.6 to release Ca2+ from islet microsomes. J. Biol. Chem. 272: 3133–3136.PubMedCrossRefGoogle Scholar
  102. 102.
    Ahern GP, Junankar PR and Dulhunty AF. 1997. Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP 12. Biophys. J. 72: 146–62.PubMedCrossRefGoogle Scholar
  103. 103.
    Timerman AP, Ogunbumni E, Freund E, Wiederrecht G, Marks AR and Fleischer S. 1993. The calcium release channel of sarcoplasmic reticulum is modulated by FK506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 268: 22992–22999.PubMedGoogle Scholar
  104. 104.
    Timerman AP, Wiederrecht G, Marcy A and Fleischer S. 1995. Characterization of an exchange reaction between soluble FKBP-12 and the FKBP. Ryanodine receptor complex. Modulation by FKBP mutants deficient in peptidyl-prolyl isomerase activity. J. Biol. Chem. 270:2451–2459.PubMedCrossRefGoogle Scholar
  105. 105.
    Ahern GP, Junankar PR and Dulhunty AF. 1997. Ryanodine receptors from rabbit skeletal muscle are reversibly activated by rapamycin. Neurosci Lett. 225: 81–84.PubMedCrossRefGoogle Scholar
  106. 106.
    Harding MW, Galat A, Uehling DE and Schreiber SL. 1989. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature. 341: 758–760.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Medical College of WisconsinMilwaukeeUSA

Personalised recommendations