Skip to main content

The Role of cADPR and NAADP in T Cell Calcium Signaling and Activation

  • Chapter
Cyclic ADP-Ribose and NAADP

Abstract

Ca2+ signaling in T-lymphocytes involves Ca2+ release from intracellular stores as well as Ca2+entry from the extracellular space [reviewed in 1–3]. Ten years ago many researchers believed that Ca2+ release in T cells is exclusively operated by D-myo-inositol 1,4,5-trisphosphate (InsP3; reviewed in ref. 4) while the capacitative mechanism of Ca2+ entry proposed by Putney [5] was thought to play a central role in the influx process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guse AH. 1998. Ca2+-signaling in T-lymphocytes. Crit. Rev. Immunol. 18: 419–448.

    Article  PubMed  CAS  Google Scholar 

  2. Lewis RS. 2001, Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19:497–521.

    Article  PubMed  CAS  Google Scholar 

  3. Grafton G and Thwaite L. 2001. Calcium channels in lymphocytes. Immunology 104: 119–126.

    Article  PubMed  CAS  Google Scholar 

  4. Premack BA and Gardner P. 1992. Signal transduction by T-cell receptors: mobilization of Ca2+ and regulation of Ca2+-dependent effector molecules. Am. J. Physiol. 263: C1119–Cl140.

    PubMed  CAS  Google Scholar 

  5. Putney JW Jr. 1986. A model for receptor-regulated calcium entry. Cell Calcium 7: 1–12.

    Article  PubMed  CAS  Google Scholar 

  6. Guse AH and Emmrich F. 1991. T-cell receptor-mediated metabolism of inositol polyphosphates in Jurkat T-lymphocytes. J. Biol. Chem. 266: 24498–24502.

    PubMed  CAS  Google Scholar 

  7. Guse AH, Goldwich A., Weber K and Mayr GW. 1995. Non-radioactive, isomer-speciflc inositol phosphate mass determinations: Micro Metal-Dye detection-HPLC strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays. J. Chromatogr. B 672: 189–198.

    Article  CAS  Google Scholar 

  8. Ng J, Gustavsson J, Jondal M and Andersson T. 1990. Regulation of calcium influx across the plasma membrane of the human T-leukemic cell line, JURKAT: dependence on a rise in cytosolic free calcium can be dissociated from formation of inositol phosphates. Biochim. Biophys. Acta.1053: 97–105.

    Article  PubMed  CAS  Google Scholar 

  9. Brattsand G, Cantrell DA, Ward S, Ivars F and Gullberg M. 1990. Signal transduction through the T cell receptor-CD3 complex. Evidence for heterogeneity in receptor coupling. J. Immunol. 144: 3651–3658.

    PubMed  Google Scholar 

  10. Wolff C, Akerman KE and Andersson LC, 1985. Kinetics of long-term (72hr) calcium content during mitogen activation of cultured human T-lymphocytes. J. Cell. Physiol. 123: 46–50.

    Article  PubMed  CAS  Google Scholar 

  11. Guse AH, Roth E and Emmrich F. 1993. Intracellular Ca2+-pools in Jurkat T-lymphocytes. Biochem.J. 291:447–451.

    PubMed  CAS  Google Scholar 

  12. Guse AH. 1999. Cyclic ADP-ribose: a novel Ca2+-mobilizing second messenger. Cell. Signalling 11: 309–316.

    Article  PubMed  CAS  Google Scholar 

  13. Guse AH. 2000. Cyclic ADP-ribose. J. Mol. Med. 78: 26–35.

    Article  PubMed  CAS  Google Scholar 

  14. Guse AH. 2000.The calcium mobilising second messenger cyclic ADP-ribose. In Calcium: the molecular basis of calcium action in biology and medicine, eds R. Pochet, R. Donato, J. Haiech, C. Heizmann, V. Gerke. pp. 109–128, Dordrecht, Kluwer Academic Publishers.

    Chapter  Google Scholar 

  15. Guse AH and DaSilva CP. 2000. Intracellular Ca2+ release mechanisms: multiple pathways having multiple functions within the same cell type? Biochim. Biophys. Acta (Molecular Cell Research Special Issue 2000) 1498: 122–133.

    Article  PubMed  Google Scholar 

  16. Guse AH. 2002. Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP): novel regulators of Ca2+ signaling and cell functions. Curr. Mol. Med. (in press).

    Google Scholar 

  17. Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BVL and Mayr GW. 1999. Regulation of Ca2+-signaling in T-lymphocytes by the second messenger cyclic ADP-ribose. Nature 398: 70–73.

    Article  PubMed  CAS  Google Scholar 

  18. Berg I, Potter BVL, Mayr GW and Guse AH. 2000. Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an essential regulator of T-lymphocyte Ca2+-signaling. J. Cell Biol. 150:581–588.

    Article  PubMed  CAS  Google Scholar 

  19. da Silva CP, Potter BVL, Mayr GW and Guse AH. 1998. Quantification of intracellular levels of cyclic ADP-ribose by high-performance liquid chromatography. J. Chromatogr. B 707: 43–50.

    Article  Google Scholar 

  20. Takahasi K, Kukimoto I, Tokita K-i, Inageda K, Inoue S-i, Kontani K, Hoshino S-i, Nishina H, Kanaho Y and Takada T. 1995. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all-trans-retinoic acid. FEBS Lett. 371:204–208.

    Article  Google Scholar 

  21. Schweitzer K, Mayr GW, and Guse AH. 2001. Assay for ADP-ribosyl cyclase by reverse-phase HPLC. Anal. Biochem. 15: 218–226.

    Article  CAS  Google Scholar 

  22. da Silva CP, Heyer P, Schweitzer K, Malavasi F, Mayr GW, and Guse AH. 1998. Ectocellular CD38-catalyzed synthesis and intracellular Ca2+-signalling activity of cyclic ADP-ribose in T-lymphocytes are not functionally related. FEBS Lett. 439: 291–296.

    Article  PubMed  Google Scholar 

  23. Bruzzone S, Guida L, Zocchi E, Franco L and De Flora A. 2001. Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 15:10–12.

    PubMed  Google Scholar 

  24. Franco L, Guida L, Bruzzone S, Zocchi E, Usai C and De Flora A. 1998. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J. 12: 1507–1520.

    PubMed  Google Scholar 

  25. Zocchi E, Usai C, Guida L, Franco L, Bruzzone S, Passalacqua M and De Flora A. 1999. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NADT transport across cell membranes. FASEB J. 13: 273–283.

    PubMed  CAS  Google Scholar 

  26. Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS, Biswas G, Sun L, Sodam BR, Bevis PJ, Huang CL, Epstein S, Lai FA, Avadhani NG and Zaidi M. 1999. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biol. 1:409–414.

    Article  PubMed  CAS  Google Scholar 

  27. Khoo KM, Han MK, Park JB, Chae SW, Kim UH, Lee HC, Bay BH and Chang CF. 2000. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J. Biol. Chem. 275: 24807–24817.

    Article  PubMed  Google Scholar 

  28. Ziegler M, Jorcke D and Schweiger M. 1997. Identification of bovine liver mitochondrial NAD+ glycohydrolase as ADP-ribosyi cyclase. Biochem. J. 326: 401–405.

    PubMed  CAS  Google Scholar 

  29. Bourguignon LY, Chu A, Jin H and Brandt NR. 1995. Ryanodine receptor-ankyrin interaction regulates internal Ca2+ release in mouse T-lymphoma cells. J. Biol. Chem. 270: 17917–17922.

    Article  PubMed  Google Scholar 

  30. Guse AH, da Silva CP, Emmrich F, Ashamu GA, Potter BVL and Mayr GW. 1995. Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+-release in T-lymphocyte cell lines. J. Immunol. 155: 3353–3359.

    PubMed  Google Scholar 

  31. Takemura H, Imoto K, Sakano S, Kaneko M and Ohshika H. 1996. Lysophosphatidic acid-sensitive intracellular Ca2+ store does not regulate Ca2+ entry at plasma membrane in Jurkat human T-cells. Biochem. J. 319: 393–397.

    PubMed  Google Scholar 

  32. Vu CQ, Coyle DL and Jacobson MK. 1997. Natural occurrence of 2’-phospho-cyclic ADP ribose in mammalian tissues. Biochem. Biophys. Res. Commun. 236: 723–726.

    Article  PubMed  CAS  Google Scholar 

  33. Guse AH, da Silva CP, Weber K, Armah C, Ashamu GA, Schulze C, Potter BVL, Mayr GW and Hilz H. 1997. l-(5-Phopho-B-D-ribosyl)2’-phosphoadenosine 5’-phosphate cyclic anhydride-induced Ca2+-release in human T cell lines. Eur. J. Biochem. 245: 411–417.

    Google Scholar 

  34. Guse AH, Berg I, da Silva CP, Potter BVL and Mayr GW. 1997. Ca2+-entry induced by cyclic ADP-ribose in intact T-lymphocytes. J. Biol. Chem. 272: 8546–8550.

    Article  PubMed  Google Scholar 

  35. Hakamata Y, Nishimura S, Nakai J, Nakashima Y, Kita T and Imoto K. 1994. Involvement of the brain type of ryanodine receptor in T-cell proliferation. FEBS Lett. 352:206–210.

    Article  PubMed  Google Scholar 

  36. Ricard I, Martel J, Dupuis L, Dupuis G and Payet MD. 1997. A caffeine/ryanodine-sensitive Ca2+ pool is involved in triggering spontaneous variations of Ca2+ in Jurkat T lymphocytes by a Ca2+-induced Ca2+ release (CICR) mechanism. Cell. Signal. 9: 197–206.

    Article  PubMed  CAS  Google Scholar 

  37. Hohenegger M, Berg I, Weigl L, Mayr GW, Potter BVL and Guse AH. 1999. Pharmacological activation of the ryanodine receptor in Jurkat T-lymphocytes. Brit. J. Pharmacol. 128: 1235–1240.

    Google Scholar 

  38. Guse AH, da Silva CP, Weber K, Ashamu GA, Potter BVL and Mayr GW. 1996. Regulation of cyclic ADP-ribose-induced Ca2+-release by Mg2+ and inorganic phosphate. J. Biol. Chem. 271: 23946–23954.

    Article  PubMed  CAS  Google Scholar 

  39. Guse AH, Cakir-Kiefer C, Fukuoka M, Shuto S, Weber K, Bailey VC, Matsuda A, Mayr GW, Oppenheimer N, Schuber F and Potter BVL. 2002. Novel hydrolysis-resistant analogues of cyclic ADP-ribose: modification of the “northern” ribose and calcium release activity. Biochemistiy (in press).

    Google Scholar 

  40. Aarhus R, Graeff RM, Dickey DM, Walseth TF and Lee HC. 1995. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270: 30327–30333.

    Article  PubMed  Google Scholar 

  41. Zhang FJ, Gu QM, Jing P and Sih CJ. 1995. Enzymatic cyclization of nicotinamide adenine dinucleotide phosphate (NADP). Bioorg. Med. Chem. Lett. 5: 2267–2272.

    Article  CAS  Google Scholar 

  42. Vu CQ, Lu PJ, Chen CS and Jacobson MK. 1996. 2,-Phospho-cyclic ADP-ribose, a calcium-mobilizing agent derived from NADP. J. Biol. Chem. 271: 4747–4754.

    Article  PubMed  Google Scholar 

  43. Ashamu GA, Sethi JK, Galione A and Potter BV. 1997. Roles for adenosine ribose hydroxy 1 groups in cyclic adenosine 5’-diphosphate ribose-mediated Ca2+ release. Biochemistry 36: 9509–9517.

    Article  PubMed  CAS  Google Scholar 

  44. Shuto S, Fukuoka M, Manikowsky A, Ueno Y, Nakano T, Kuroda R, Kuroda H and Matsuda A. 2001. Total synthesis of cyclic ADP-carbocyclic-ribose, a stable mimic of Ca2+-mobilizing second messenger cyclic ADP-ribose. J. Am. Chem. Soc. 123: 8750–8759.

    Article  PubMed  CAS  Google Scholar 

  45. Walseth TF and Lee HC. 1993. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim. Biophys. Acta 1178: 235–242.

    Article  PubMed  CAS  Google Scholar 

  46. Sethi JK, Empson RM, Bailey VC, Potter BV and Galione A. 1997. 7-Deaza-8-bromo-cyclic ADP-ribose. the first membrane-permeant. hydrolysis-resistant cyclic ADP-ribose antagonist. J. Biol. Chem. 272: 16358–16363.

    Article  PubMed  Google Scholar 

  47. Schöttelndreier H, Potter BVL, Mayr GW and Guse AH. 2001. Mechanisms involved in a661-integrin-mediated Ca2+ signalling. Cell. Signalling 13: 895–899.

    Article  PubMed  Google Scholar 

  48. Jayaraman T, Ondrias K, Ondriasova E and Marks AR. 1996. Regulation of the inositol 1.4.5-trisphosphate receptor by tyrosine phosphorylation. Science 272: 1492–1494.

    Article  PubMed  Google Scholar 

  49. Guse AH, Tsygankov AY, Weber K and Mayr GW. 2001. Transient tyrosine phosphorylation of human ryanodine receptor upon T cell stimulation. J. Biol. Chem. 276: 34722–34727.

    Article  PubMed  Google Scholar 

  50. Guse AH, de Wit C, Klokow T, Schweitzer K, and Mayr GW. 1997. Unique properties of the capacitative Ca2+-entry antagonist LU 52396: Its inhibitor)’ activity depends on the activation state of the cells. Cell Calcium 22: 91–97.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guse, A.H. (2002). The Role of cADPR and NAADP in T Cell Calcium Signaling and Activation. In: Lee, H.C. (eds) Cyclic ADP-Ribose and NAADP. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0269-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0269-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4996-9

  • Online ISBN: 978-1-4615-0269-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics