Subcellular and Extracellular Trafficking of NAD+ and Cyclic ADP-Ribose: A New Way for Regulating Intracellular Calcium Homeostasis



Ectobiochemistry is an emerging branch of cell biology. It investigates at a molecular level all those processes that take place at the outer surface of cells. This localization can be functionally related on one hand to the interplay of solute-transporting and of ectoenzymatic activities occurring in an individual cell (autocrine model). On the other hand, ectocellular processes mediate many mechanisms of cell-to-cell communication (paracrine model), with some cells providing signal molecules to other cells and with biorecognition and molecular interactions between extracellular agonists and membrane receptors being transduced in the sensing cells to generate specific responses.


Paracrine Signaling Intracellular Calcium Homeostasis Hemopoietic Progenitor Cx43 Hemichannels Bovine Tracheal Smooth Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    States DJ, Walseth TF and Lee HC. 1992. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem. Sci. 17: 495.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee HC, Walseth TF, Bratt GT, Hayes RN and Clapper DL. 1989. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J.Biol. Chem. 264: 1608–16015.PubMedGoogle Scholar
  3. 3.
    Lee HC and Aarhus R. 1995. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J. Biol. Chem. 270: 2152–2157.PubMedCrossRefGoogle Scholar
  4. 4.
    Aarhus R, Graeff RM, Dickey DM, Walseth TF and Lee HC. 1995. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270: 30327–30333.PubMedCrossRefGoogle Scholar
  5. 5.
    Chini EN, Beers KW and Dousa TP. 1995. Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs. J. Biol. Chem. 270:3216–3223.PubMedCrossRefGoogle Scholar
  6. 6.
    Franco L, Guida L, Bruzzone S, Zocchi E, Usai C and De Flora A. 1998. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J. 12: 1507–1520.PubMedGoogle Scholar
  7. 7.
    Bruzzone S, Guida L, Zocchi E, Franco L and De Flora A. 2001. Connexin 43 hemichannels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 15: 10–12.PubMedGoogle Scholar
  8. 8.
    Bruzzone S, Franco L, Guida L, Zocchi E, Contini P, Bisso A, Usai C and De Flora A. 2001. A self restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts. J. Biol. Chem. 276: 48300–48308.PubMedGoogle Scholar
  9. 9.
    De Flora A, Franco L, Guida L, Bruzzone S, Usai C and Zocchi E. 2000. Topology of CD38. Chem. Immunol. 75: 79–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Prasad GS, McRee DE, Stura EA, Levitt DG, Lee HC and Stout CD. 1996. Crystal structure of Aplysia ADP-ribosyl cyclase, a homologue of the bifunctional ectoenzyme CD38. Nature Struct. Biol. 3: 957–967.PubMedCrossRefGoogle Scholar
  11. 11.
    Munshi C, Aarhus R, Graeff R, Walseth TF, Levitt D and Lee HC. 2000. Identification of the enzymatic active site of CD38 by site-directed mutagenesis. J. Biol. Chem. 275: 21566–21571.PubMedCrossRefGoogle Scholar
  12. 12.
    Graeff R, Munshi C, Aarhus R, Johns M and Lee HC. 2001. A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities. J. Biol. Chem. 276: 12169–12173.PubMedCrossRefGoogle Scholar
  13. 13.
    Tohgo A, Takasawa S, Noguchi N, Koguma T, Nata K, Sugimoto T, Furuya Y, Yonekura, H and Okamoto H. 1994. Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J. Biol. Chem. 269: 28555–28557.PubMedGoogle Scholar
  14. 14.
    Bruzzone S, Guida L, Franco L, Zocchi E, Corte G and De Flora A. 1998. Dimeric and tetrameric forms of catalytically active transmembrane CD38 in transfected HeLa cells. FEBS Lett. 433:275–278.PubMedCrossRefGoogle Scholar
  15. 15.
    De Flora A, Guida L, Franco L and Zocchi E. 1997. The CD38/Cyclic ADP-ribose system: A topological paradox. Int. J. Biochem. Cell Biol. 29: 1149–1166.PubMedCrossRefGoogle Scholar
  16. 16.
    Lund FE, Cockayne DA, Randall TD, Solvason N, Schuber F and Howard MC. 1998. CD38: a new paradigm in lymphocyte activation and signal trasduction. Immunol. Rev. 161:79–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Zocchi E, Daga A, Usai C, Franco L, Guida L, Bruzzone S, Costa A, Marchetti C and De Flora A. 1998. Expression of CD38 increases intracellular calcium concentration and reduces doubling time in HeLa and 3T3 cells. J. Biol. Chem. 273: 8017–8024.PubMedCrossRefGoogle Scholar
  18. 18.
    Funaro A, Reinis M, Trubiani O, Santi S, Di Primio R and Malavasi F. 1998. CD38 functions are regulated through an internalization step. J. Immunol. 160: 2238–2247.PubMedGoogle Scholar
  19. 19.
    Zocchi E, Usai C, Guida L, Franco L, Bruzzone S, Passalacqua M and De Flora A. 1999. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization. Role of NAD+ transport across cell membranes. FASEB J. 13: 273–283.PubMedGoogle Scholar
  20. 20.
    Zocchi E, Franco L, Guida L, Piccini D, Tacchetti C and De Flora A. 1996. NAD+-dependent internalization of the transmembrane glycoprotein CD38 in human Namalwa B cells. FEBS Lett. 396: 327–332.PubMedCrossRefGoogle Scholar
  21. 21.
    Walseth TF and Lee HC. 1993. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim. Biophys. Acta. 1178: 235–242.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee HC, Zocchi E, Guida L, Franco L, Benatti U and De Flora A. 1993. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 191: 639–645.PubMedCrossRefGoogle Scholar
  23. 23.
    Zocchi E, Franco L, Guida L, Benatti U, Bargellesi A, Malavasi F, Lee HC and De Flora A. 1993. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 196: 1459–1465.PubMedCrossRefGoogle Scholar
  24. 24.
    Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos AL, Parkhouse RM, Walseth TF and Lee HC. 1993. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056–1059.PubMedCrossRefGoogle Scholar
  25. 25.
    De Flora A, Guida L, Franco L, Zocchi E, Pestarino M, Usai C, Marchetti C, Fedele E, Fontana G and Raiteri M. 1996. Ectocellular in vitro and in vivo metabolism of cyclic ADP-ribose in cerebellum. Biochem. J. 320: 665–672.PubMedGoogle Scholar
  26. 26.
    Podesta M, Zocchi E, Pitto A, Usai C, Franco L, Bruzzone S, Guida L, Bacigalupo A, Scadden DT, Walseth TF, De Flora A and Daga A. 2000. Extracellular cyclic ADP-ribose increases intracellualr free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB J. 14: 680–690.PubMedGoogle Scholar
  27. 27.
    Franco L, Bruzzone S, Song P, Guida L, Zocchi E, Walseth TF, Crimi E, Usai C, De Flora A and Brusasco V. 2001. Extracellular Cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:L98–L106.PubMedGoogle Scholar
  28. 28.
    Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A and De Flora A. 2001. Paracrine roles of NAD+ and Cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J. Biol. Chem. 276: 21642–21648.PubMedGoogle Scholar
  29. 29.
    Bruzzone R, White TW and Paul DL. 1996. Connections with connexins: the molecular basis of direct intercellular signaling. Eur. J. Biochem. 238: 1–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Lampe PD and Lau AF. 2000. Regulation of gap junctions by phosphorylation of connexins. Arch. Biochem. Biophys. 384: 205–215.PubMedCrossRefGoogle Scholar
  31. 31.
    Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG and Lau AF. 2000. Phosphorylation of connexin 43 on serine 368 by protein kinase C regulates gap junctional communication. J. Cell Biol. 149: 1503–1512.PubMedCrossRefGoogle Scholar
  32. 32.
    Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV and Mayr GW. 1999. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398: 70–73.Google Scholar
  33. 33.
    Hotta T, Asai K, Fujita K, Kato T and Higashida H. 2000. Membrane-bound form of ADP-ribosyl cyclase in rat cortical astrocytes in culture. J. Neurochem. 74: 669–675.PubMedCrossRefGoogle Scholar
  34. 34.
    Higashida H, Hashii M, Yokoyama S, Hoshi N, Asai K and Kato T. 2001. Cyclic ADP-ribose as a potential second messenger for neuronal Ca2+ signaling. J. Neurochem. 76: 321–331.PubMedCrossRefGoogle Scholar
  35. 35.
    Galione A, White A, Willmott N, Turner M, Potter BV and Watson SP. 1993. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 365: 456–459.PubMedCrossRefGoogle Scholar
  36. 36.
    Graeff RM, Franco L, De Flora A and Lee HC. 1998. Cyclic GMP dependent and independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and NAADP. J. Biol. Chem. 273: 118–125.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R and Chua NH. 1997. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278: 2126–2130.PubMedCrossRefGoogle Scholar
  38. 38.
    Zocchi E, Carpaneto A, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Franco L and Usai C. 2001. The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 98: 14859–14864.PubMedCrossRefGoogle Scholar
  39. 39.
    Prakash YS, Kannan MS, Walseth TF and Sieck GS. 1998. Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am. J. Physiol. Cell. Physiol. 274: C1653–C1660.Google Scholar
  40. 40.
    Wong L, Aarhus R, Lee HC and Walseth TF. 1999. Cyclic 3-deaza-adenosine diphosphoribose: A potent and stable analog of cyclic ADP-ribose. Biochim. Biophys. Acta. 1472:555–564.Google Scholar
  41. 41.
    Jackson DG. and Bell J. 1990. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J. Immunol. 144: 2811–2815.PubMedGoogle Scholar
  42. 42.
    Mehta K and Cheema S. 1999. Retinoid-mediated signaling pathways in CD38 antigen expression in myeloid leukemia cells. Leuk. Lymphoma 32: 441–449.PubMedGoogle Scholar
  43. 43.
    Hirata Y, Kimura N, Sato K, Ohsugi Y, Takasawa S, Okamoto H, Ishikawa J, Kaisho T, Ishihara K and Hirano T. 1994. ADP-ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule. BST-1. FEBS Lett. 356: 244–248.PubMedCrossRefGoogle Scholar
  44. 44.
    Zocchi E, Podesta M, Pitto A, Usai C, Bruzzone S, Franco L, Guida L, Bacigalupo A and De Flora A. 2001. Paracrinally stimulated expansion of early human hemopoietic progenitors by stroma-generated cyclic ADP-ribose. FASEB J. 15: 1610–1612.PubMedGoogle Scholar
  45. 45.
    Ishihara K and Hirano T. 2000. BST-1/CD 157 regulates the humoral immune responses in vivo. Chem. Immunol. 75: 235–255.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosendaal M, Green CR, Rahaman A and Morgan D. 1994. Up-regulation of the connexin 43-gap junction network in haemopoietic tissue before the growth of stem cells. J. Cell Sci. 107:29–37.PubMedGoogle Scholar
  47. 47.
    Montecino-Rodriguez E, Leaders H and Dorshkind K. 2000. Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood 96: 917–924.PubMedGoogle Scholar
  48. 48.
    Cancelas JA, Koevoet WL, de Koning AE, Mayen AE, Rombouts EJ and Ploemacher RE. 2000. Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells. Blood 96: 498–504.PubMedGoogle Scholar
  49. 49.
    Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. 1999. Energy on demand. Science 283: 496–497.PubMedCrossRefGoogle Scholar
  50. 50.
    Parpura V,Basarsky TA, Liu F, Jetnijia K, Jeftinijia S and Haydon PG. 1994. Glutamate-mediated astrocyte-neuron signalling. Nature 369: 744–747.Google Scholar
  51. 51.
    Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T and Volterra A. 1998. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285.PubMedCrossRefGoogle Scholar
  52. 52.
    Bacci A, Verderio C, Pravettoni E and Matteoli M. 1999. The role of glial cells in synaptic function. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354: 403–409.Google Scholar
  53. 53.
    Reyes-Harde M, Empson R, Potter BV, Galione A and Stanton PK. 1999. Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc. Natl. Acad. Sci. USA. 96: 4061–4066.PubMedCrossRefGoogle Scholar
  54. 54.
    Verderio C, Bruzzone S, Zocchi E, Fedele E, Schenk U, De Flora A and Matteoli M. 2001. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J. Neurochem. 78: 646–657.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee HC. 1997. Mechanism of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev. 17: 1134–1164.Google Scholar
  56. 56.
    Walseth TF, Aarhus R, Kerr JA and Lee HC. 1993. Identification of cyclic ADP-ribose-binding proteins by photoaffinity labeling. J. Biol Chem. 268: 26686–26691PubMedGoogle Scholar
  57. 57.
    Lee HC, Aarhus R, Graeff R, Gurnack ME and Walseth TF. 1994. Cyclic ADP-ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370: 307–309.PubMedCrossRefGoogle Scholar
  58. 58.
    Li PL, Tang WX, Valdivia HH, Zou AP and Campbell WB. 2001. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am. J. Physiol, Heart Circ. Physiol. 280: H208–H215.Google Scholar
  59. 59.
    Tang WX, Chen YF, Zou AP, Campbell WB and Li PL. 2002. Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am. Physiol. Heart Circ. Physiol. 282: H1304–H1310.Google Scholar
  60. 60.
    Berridge MJ, Lipp P and Bootman MD. 2000. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol. 1: 11–21.CrossRefGoogle Scholar
  61. 61.
    Bootman MD, Lipp P and Berridge MJ. 2001. The organisation and functions of local Ca2+ signals. J. Cell Sci. 114: 2213–2222.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical ResearchUniversity of GenovaGenovaItaly
  2. 2.G. Gaslini InstituteGenovaItaly

Personalised recommendations