Antimicrobial Choices and Dosing Strategies to Maximize Efficacy and Minimize the Development of Bacterial Resistance

  • Joseph A. Paladino
Part of the Molecular and Cellular Biology of Critical Care Medicine book series (MCCM, volume 3)


The goal of maximizing efficacy and minimizing antimicrobial resistance can be termed optimizing therapy. To achieve optimal therapy, a number of outcomes must be met (Table 1).


Minimum Inhibitory Concentration Clin Infect Antimicrob Agent Microbial Resistance Bacteriological Efficacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paladino JA. Streamlining antibiotic therapy: clinical application of pharmacokinetic and pharmacodynamic principles. J Osteopath Med 1991; 5:16–25.Google Scholar
  2. 2.
    Liss RH, Batchelor FR. Economic evaluations of antibiotic use and resistance - a perspective: report of task force 6. Rev Infect Dis 1987; 9 (suppl 3): S297–312.PubMedCrossRefGoogle Scholar
  3. 3.
    Holmberg SD, Solomon SL, Blake PA. Health and economic impacts of antimicrobial resistance. Rev Infect Dis 1987; 9:1065–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Sanders CC. Mechanisms responsible for cross-resistance and dichotomous resistance among the quinolones. Clin Infect Dis 2001; 32(Suppl l):Sl-8.CrossRefGoogle Scholar
  5. 5.
    Ballow CH, Schentag JJ. Trends in antibiotic utilization and bacterial resistance: report of the NNRSG. Diagn Microbiol Infect Dis. 1992; 15(suppl):37S-42S.PubMedGoogle Scholar
  6. 6.
    Rice LB, Eckstein EC, DeVente J, Shlaes DM. Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin Infect Dis 1996; 23:118–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Hyatt JM, Nix DE, Stratton CW, Schentag JJ. Relative potential for five classes of antimicrobial agents, alone and in combination, to select/induce oxacillin resistance in susceptible Staphylococcus aureus. 35th ICAAC meeting, Abstract C129, San Francisco, CA September 20, 1995.Google Scholar
  8. 8.
    Schentag JJ, Hyatt JM, Carr JR, Paladino JA, Birmingham MC, Zimmer GS, Cumbo TJ. Genesis of methicillin-resistant Staphylococcus aureus (MRSA), how treatment of MRS A infections has selected for vancomycin-resistant Enterococcus faecium, and the importance of antibiotic management and infection control. Clin Infect Dis 1998; 26:1204–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Fridkin SF, Edwards JR, Tenover FC, Gaynes RP, McGowan JE Jr. Antimicrobial resistance prevalence rates in hospital antibiograms reflect prevalence rates among pathogens associated with hospital-acquired infections. Clin Infect Dis 2001; 33:324–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Pickerill KE, Paladino JA, Schentag JJ. Comparison of the fluoroquinolones using pharmacokinetic and pharmacodynamic parameters. Pharmacotherapy 2000; 20:417–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26:1–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Hyatt JM, McKinnon PS, Zimmer GS, Schentag JJ. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Clin Pharmacokinet 1995; 28:143–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Jusko WJ. Guidelines for collection and analysis of pharmacokinetic data. In: Evans WE, Schentag JJ, Jusko WJ, eds. Applied Pharmacokinetics, 3 Edition. Vancouver, WA: Applied Therapeutics, Inc., 1992; Chapter 2; 1–43.Google Scholar
  14. 14.
    Peck CC, D’Argenio DZ, Rodman JH. Analysis of pharmackinetic data for individualizing drug dosage regimens. In Evans WE, Schentag JJ, Jusko WJ, eds. Applied Pharmacokinetics. 3 Edition, Vancouver, WA.; Applied Therapeutics, Inc.; 1992; Chapter 3; 1–31.Google Scholar
  15. 15.
    Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Disl991; 74(suppl.):63–70.Google Scholar
  16. 16.
    Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornself B, Reichl V, Natarajan J, Corrado M. Pharmacodynamics of levofloxacin. JAMA 1998; 279:125–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Vogelman B, Craig WA. Kinetics of antimicrobial activity. J Pediatr 1986; 108:835–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Schentag JJ, Nix DE, Adelman MH. Mathematical examination of dual individualization principles (I): relationships between AUC above MIC and area under the inhibitory curve for cefmenoxime, ciprofloxacin, and tobramycin. DICP, Ann Pharmacotherapy 1991; 25:1050–7.Google Scholar
  19. 19.
    Schentag JJ, Ballow CM, Paladino JA, Nix DE. Dual individualization of antibiotics. In: Evans WE, Schentag JJ, Jusko WJ, eds. Applied Pharmacokinetics. Vancouver WA. Applied Therapeutics, Inc. 3 Edition; 1992; 17:1–20.Google Scholar
  20. 20.
    Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37:1073–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Nix DE, Sands MF, Peloquin CA, Vari AJ, Cumbo TJ, Vance JW, Fracasso JE, Schentag JJ. Dual individualization of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections. Am J Med 1987; 82 (suppl 4A):352–6.PubMedGoogle Scholar
  22. 22.
    Schentag JJ, Smith IL, Swanson DJ, DeAngelis C, Fracasso JE, Vari A, Vance JW. Role for dual individualization with cefmenoxime. Am J Med 1984; 77(suppl 6A):43–50.PubMedGoogle Scholar
  23. 23.
    Madras-Kelly KJ, Ostergaard BE, Baeker Hovde L, Rotschafer JC. Twenty-four-hour area under the concentration-time curve/MIC ratio as a generic predictor of fluoroquinolone antimicrobial effect by using three strains of Pseudomonas aeruginosa and an in vitro pharmacodynamic model. Antimicrob Agents Chemother 1996; 40:627–32.Google Scholar
  24. 24.
    Forrest A, Chodosh S, Amantea MA, Collins DA, Schentag JJ. Pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 1997; 40 Suppl A:45–57.PubMedCrossRefGoogle Scholar
  25. 25.
    Schentag JJ, Gilliland KK, Paladino JA. Pharmacokinetics and pharmacodynamics of the fluoroquinolones. Clin Infect Dis. 2001; 32 (Suppl l):S39–46.PubMedCrossRefGoogle Scholar
  26. 26.
    Thomas JK, Forrest A, Bhavnani SM, Hyatt JM, Cheng A, Ballow CH, Schentag JJ. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 1998; 42:521–27.PubMedGoogle Scholar
  27. 27. Burgess DS. Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance. Chest 1999; 115:19–23S.CrossRefGoogle Scholar
  28. 28.
    Paladino JA, Fell RE. Pharmacoeconomic analysis of cefmenoxime dual individualization in the treatment of nosocomial pneumonia. Ann Pharmacother 1994; 28:384–89.PubMedGoogle Scholar
  29. 29.
    Paladino JA, Zimmer GS, Schentag JJ. The economic potential of dual individualization methodologies. PharmacoEconomics 1996; 6:539–45.CrossRefGoogle Scholar
  30. 30.
    Drusano GL, Preston SL, Owens RC, Ambrose PG. Fluoroquinolone pharmacodynamics (correspondence). Clin Infect Dis 2001; 33:2091–2.PubMedCrossRefGoogle Scholar
  31. 31.
    Schentag JJ, Gilliland KK, Paladino JA.. Fluoroquinolone pharmacodynamics (reply). Clin Infect Dis 2001; 33:2092–6.CrossRefGoogle Scholar
  32. 32.
    Tarn VH, Louie A, Deziel MR, et al. AUC/MIC ratio and duration of therapy both influence the probability of emergence of resistance to a fluoroquinolone in an in vitro hollow fiber infection model. 39th IDSA meeting, San Francisco, October 25–28, 2001, Clin Infect Dis 2001; 33:1169, Abstract 473.Google Scholar
  33. 33.
    Orrick J, Ramphal R, Johns T, Russell W. Improving antibiotic susceptibility of Type 1 ß-lactamase producing organisms after formulary replacement of ceftazidime with cefepime. 39th ICAAC meeting, San Francisco, 1999; Abstract #731.Google Scholar
  34. 34.
    Rifenburg RP, Paladino JA, Bhavnani SM, Den Haese D, Schentag JJ. Influence of fluoroquinolone purchasing patterns on antimicrobial expenditures and Pseudomonas aeruginosa susceptibility. Am J Health-Syst Pharm 1999; 56: 2217–23.PubMedGoogle Scholar
  35. 35.
    Bhavnani SM, Forrest A, Collins DA, Paladino JA, Schentag JJ. Association between fluoroquinolone expenditures and ciprofloxacin susceptibility of Pseudomonas aeruginosa among US hospitals. 39th ICAAC meeting, San Francisco, 1999; Abstract #182.Google Scholar
  36. 36.
    Hill H, Haber M, McGowan J, et al. A link between quinolone use and resistance in P. aeruginosa, Preliminary data from Project ICARE. 39th IDSA meeting, San Francisco, October 25–28, 2001, Clin Infect Dis 2001; 33:1173, Abstract 495.Google Scholar
  37. 37.
    Dong Y, Zhao X, Domagala J, Drlica K. Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob Agents Chemother 1999; 43(7): 1756–8.PubMedGoogle Scholar
  38. 38.
    Li X, Zhao X, Drlica K. Selection of Streptococcus pneumoniae mutants having reduced susceptibility to moxifloxacin and levofloxacin. Antimicrob Agents Chemother 2002; 46: 522–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. J Infect Dis 2002; 185: In press.Google Scholar
  40. 40.
    Hansen G, Blondeau JM, Drlica K, Zhao X. Evaluation of ciprofloxacin and levofloxacin by mutation prevention concentration against 119 isolates of Pseudomonas aeruginosa. 41st ICAAC Meeting, Chicago, 2001; Abstract #E-729.Google Scholar
  41. 41.
    Blondeau JM, Hansen G, Drlica K, Zhao X. Cmax, MPC, and MIC for the killing of Streptococcus pneumonia by gatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin. 41st ICAAC Meeting, Chicago, 2001; Abstract #A-2079.Google Scholar
  42. 42.
    Paladino JA, Sperry H, Backes JM, Gelber J, Jones DA, Cumbo TJ, Schentag JJ. Clinical and economic evaluation of oral ciprofloxacin following an abbreviated course of intravenous antibiotics. Am J Med 1991;91:462–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Jensen KM, Paladino JA. Cost-effectiveness of abbreviating the duration of intravenous antibacterial therapy with oral fluoroquinolones. PharmacoEconomics. 1997;11:64–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Walters DJ, Solomkin JS, Paladino JA. Cost-effectiveness of ciprofloxacin plus metronidazole vs imipenem/cilastatin in the treatment of intra-abdominal infections. PharmacoEconomics 1999;16 (5 Pt2):551–61.PubMedCrossRefGoogle Scholar
  45. 45.
    File TM Jr, Segreti J, Dunbar L, Player R, Kohler R, Williams RR, et al. A multicenter, randomized study comparing the efficacy and safety of intravenous and/or oral levofloxacin versus ceftriaxone and/or cefuroxime axetil in treatment of adults with community-acquired pneumonia. Antimicrob Agents Chemother 1997;41:1965–72.PubMedGoogle Scholar
  46. 46.
    Dresser LD, Niederman MS, Paladino JA. Cost-effectiveness of gatifloxacin versus ceftriaxone/macrolide for the treatment of community-acquired pneumonia. Chest 2001; 119:1439–48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Joseph A. Paladino
    • 1
  1. 1.CPL Associates LLCState University of New York at BuffaloAmherstUSA

Personalised recommendations