Function of PACAP in the Central Nervous System

  • B. J. Gonzalez
  • D. Vaudry
  • M. Basille
  • C. Rousselle
  • A. Falluel-Morel
  • H. Vaudry
Part of the Endocrine Updates book series (ENDO, volume 20)

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP), has been originally isolated from the ovine hypothalamus on the basis of its hypophysiotropic activity (Miyata et al, 1989). Soon after its characterization, it has been shown that PACAP and PACAP receptors are widely distributed in the central nervous system (CNS) of adult mammals, indicating that PACAP may act not only as a neurohormone, but also as a neurotransmitter and/or neuromodulator (Arimura et al, 1998; Vaudry et al, 2000a). PACAP and its receptors are also actively expressed in the brain during development suggesting that this peptide may be involved in the control of neurogenesis. As a matter of fact, there is now strong evidence that PACAP acts as a neurotrophic factor regulating proliferation, migration, differentiation and survival of nerve cells during brain development.

Keywords

Migration Ischemia Dopamine Cysteine Germinal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahnaou A, Basilic M, Gonzalez B, Vaudry H, Hamon M, Adrien J, Bourgin P. Long-term enhancement of REM sleep by the pituitary adenylyl cyclase-activating polypeptide (PACAP) in the pontine reticular formation of the rat. Eur J Neurosci 1999;11:4051–4058.PubMedGoogle Scholar
  2. Akiyama M, Minami Y, Nakajima T, Moriya T, Shibata S. Calcium and pituitary adenylate cyclase-activating polypeptide induced expression of circadian clock gene mPerl in the mouse cerebellar granule cell culture. J Neurochem 2001;78:499–508.PubMedGoogle Scholar
  3. Anderson ST, Sawangjaroen K, Curlewis JD. Pituitary adenylate cyclase-activating polypeptide acts within the medial basal hypothalamus to inhibit prolactin and luteinizing hormone secretion. Endocrinology 1996;137:3424–3429.PubMedGoogle Scholar
  4. Anderson ST, Curlewis JD. PACAP stimulates dopamine neuronal activity in the medial basal hypothalamus and inhibits prolactin. Brain Res 1998;790:343–346.PubMedGoogle Scholar
  5. Aoyagi K, Takahashi M. Pituitary adenylate cyclase-activating polypeptide enhances Ca(2+)- dependent neurotransmitter release from PC12 cells and cultured cerebellar granule cells without affecting intracellular Ca(2+) mobilization. Biochem Biophys Res Commun 2001;286:646–651.PubMedGoogle Scholar
  6. Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 1991;129:2787–2789.PubMedGoogle Scholar
  7. Arimura A. Perspectives on pituitary adenylate cyclase-activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol 1998;48:301–331.PubMedGoogle Scholar
  8. Ashur-Fabian 0, Giladi E, Brennemam DE, Gozes I. Identification of VIP/PACAP receptors on rat astrocytes using antisense oligodeoxynucleotides. J Mol Neurosci 1997;9:11–22.Google Scholar
  9. Basille M, Gonzalez BJ, Leroux P, Jeandel L, Fournier A, Vaudry H. Localization and characterization of PACAP receptors in the rat cerebellum during development. Evidence for a stimulatory effect of PACAP on immature cerebellar granule cells. Neuroscience 1993;57:329–338.PubMedGoogle Scholar
  10. Basille M, Gonzalez BJ, Fournier A, Vaudry H. Ontogeny of pituitary adenylate cyclaseactivating polypeptide (PACAP) receptors in the rat cerebellum: a quantitative autoradiographic study. Dev Brain Res 1994;82: 81–89.Google Scholar
  11. Basille M, Gonzalez BJ, Desrues L, Demas M, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates adenylyl cyclase and phospholipase C activity in rat cerebellar neuroblasts. J Neurochem 1995;65:1318–1324.PubMedGoogle Scholar
  12. Basille M, Gonzalez BJ, Vaudry D, Coularn Y, Jegou S, Lihrmann I, Fournier A, Vaudry H. Distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) receptor mRNAs and PACAP binding sites in the rat brain germinative neuroepithelia. J Comp Neurol 2000;425:495–509.PubMedGoogle Scholar
  13. Besson J, Sarrieau A, Vial M, Marie JC, Rosselin G, Rostene W. Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Res 1986;398:329–336.PubMedGoogle Scholar
  14. Bredow S., Kacsóh B, Obal F Jr, Fang J, Krueger JM. Increase of prolactin mRNA in the rat hypothalamus after intracerebroventricular injection of VIP or PACAP. Brain Res 1994;660:301–308.PubMedGoogle Scholar
  15. Cagampang FR, Piggins HD, Sheward WJ, Harmar AJ, Coen CW. Circadian changes in PACAP type 1 (PACI) receptor mRNA in the rat suprachiasmatic and supraoptic nuclei. Brain Res 1998;813:218–222.PubMedGoogle Scholar
  16. Campard PK, Crochemore C, Rene F, Monnier D, Koch B, Loeffler JP. PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA Cell Biol 1997;16:323–333.Google Scholar
  17. Cavallaro S, Copani A, D’Agata V, Musco S, Petralia S, Ventra C, Stivala F, Travali S, Canonico PL. Pituitary adenylate cyclase-activating polypeptide prevents apoptosis in cultured cerebellar granule neurons. Mol Pharmacol 1996;50:60–66.PubMedGoogle Scholar
  18. Cauvin A, Buscail L, Gourlet P, De Neef P, Gossen D, Arimura A, Miyata A, Coy DH, Robberecht P, Christophe J. The novel VIP-like hypothalamic polypeptide PACAP interacts with high affinity receptors in the human neuroblastoma cell line NB-OK. Peptides 1990;11:773–777.PubMedGoogle Scholar
  19. Cauvin A, Robberecht P, De Neef P, Gourlet P, Vandermeers A, Vandermeers-Piret MC, Christophe J. Properties and distribution of receptors for pituitary adenylate cyclaseactivating peptide (PACAP) in rat brain and spinal cord. Regul Pept 1991;35:161–173.PubMedGoogle Scholar
  20. Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU. Pituitary adenylyl cyclaseactivating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci USA 1999;96:13468–13473.PubMedGoogle Scholar
  21. Chik CL and Ho AK. Pituitary adenylate cyclase-activating polypeptide: control of rat pineal cyclic AMP and melatonin but not cyclic GMP. J Neurochem 1995;64:2111–2117.PubMedGoogle Scholar
  22. Chik CL, Liu QY, Li B, Klein DC, Zylka M, Kim DS, Chin H, Karpinsky E, Ho AK. Alpha 1D-L-type Ca(2+)-channel currents: inhibition by a beta-adrenergic agonist and pituitary adenylate cyclase-activating polypeptide (PACAP) in rat pinealocytes. J Neurochem 1997;68:1078–1087.PubMedGoogle Scholar
  23. Christophe J. Is there appetite after GLP-1 and PACAP? Ann N Y Acad Sci 1998;865:323–335.PubMedGoogle Scholar
  24. Ciani E, Hoffmann A, Schmidt P, Journot L, Spengler D. Induction of the PAC1-R (PACAPtype I receptor) gene by p53 and Zac. Mol Brain Res 1999;69:290–294.PubMedGoogle Scholar
  25. Colom LV, Diaz ME, Beers DR, Neely A, Xie WJ, Appel SH. Role of potassium channels in amyloid-induced cell death. J Neurochem 1998;70:1925–1934.PubMedGoogle Scholar
  26. Dibbern DA Jr, Glazner GW, Gozes I, Brenneman DE, Hill JM. Inhibition of murine embryonic growth by human immunodeficiency virus envelope protein and its prevention by vasoactive intestinal peptide and activity-dependent neurotrophic factor. J Clin Invest 1997;99:2837–2841.PubMedGoogle Scholar
  27. Dicicco-Bloom E, Lu N, Pintar JE, Zhang J. The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann N Y Acad Sci 1998;865:274–289.PubMedGoogle Scholar
  28. Dickinson T, Mitchell R, Robberecht P, Fleetwood-Walker SM. The role of VIP/PACAP receptor subtypes in spinal somatosensory processing in rats with an experimental peripheral mononeuropathy. Neuropharmacology 1999;38:167–180.PubMedGoogle Scholar
  29. Dun EC, Huang RL, Dun SL, Dun NJ. Pituitary adenylate cyclase-activating polypeptideimmunoreactivity in human spinal cord and dorsal root ganglia. Brain Res 1996;721:233–237.PubMedGoogle Scholar
  30. Favit A, Scapagnini U, Canonico PL. Pituitary adenylate cyclase-activating polypeptide activates different signal transducing mechanism in cultured cerebellar granule cells. Neuroendocrinology 1995;61:377–382.PubMedGoogle Scholar
  31. Figiel M and Engele J. Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism. J Neurosci 2000;20:3596–3605.PubMedGoogle Scholar
  32. Frechilla D, Garcia-Osta A, Palacios S, Cenarruzabeitia E, Del Rio J. BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. NeuroReport 2001;12:919–923.PubMedGoogle Scholar
  33. Fukuhara C, Inouye SIT, Matsumoto Y, Tsujimoto G, Aoki K, Masuo Y. Pituitary adenylate cyclase-activating polypeptide rhythm in the rat pineal gland. Neurosci Lett 1998;241:115–119.PubMedGoogle Scholar
  34. Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR. Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissue. J Endocrinol 1993;136:159–166.PubMedGoogle Scholar
  35. Gillardon F, Hata R, Hossmann KA. Delayed up-regulation of zacl and PACAP type I receptor after transient focal cerebral ischemia in mice. Mol Brain Res 1998;61:207–210.PubMedGoogle Scholar
  36. Gonzalez BJ, Leroux P, Basille M, Bodenant C, Vaudry H. Somatostatin and pituitary adenylate cyclase-activating polypeptide (PACAP): two neuropeptides potentially involved in the development of the rat cerebellum. Ann Endocrinol 1994;55:243–247.Google Scholar
  37. Gonzalez BJ, Basille M, Vaudry D, Fournier A, Vaudry H. Pituitary adenylate cyclaseactivating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience 1997a;78:419–430.Google Scholar
  38. Gonzalez BJ, Vaudry D, Basille M, Fournier A, Vaudry H. Role neurotrophique potentiel dupituitary adenylyl cyclase-activating polypeptide. Med/Sci 1997b;13:1331–1335.Google Scholar
  39. Gonzalez BJ, Basille M, Vaudry D, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide. Ann Endocrinol 1998;59:364–405.Google Scholar
  40. Gottschall PE, Tatsuno I, Miyata A, Arimura A. Characterization and distribution of binding sites for the hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide. Endocrinology 1990;127:272–277.PubMedGoogle Scholar
  41. Gottschall PE, Tatsuno I, Arimura A. Hypothalamic binding sites for pituitary adenylate cyclase-activating polypeptide: characterization and molecular identification. FASEB J 1991;5:194–199.PubMedGoogle Scholar
  42. Gottschall PE, Tatsuno I, Arimura A. Regulation of interleukin-6 (IL-6) secretion in primary cultured rat astrocytes: synergism of interleukin-1 (IL-1) and pituitary adenylate cyclaseactivating polypeptide (PACAP). Brain Res 1994;637:197–203.PubMedGoogle Scholar
  43. Gressens P, Hill JM, Gozes I, Fridkin M, Brenneman DE. Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature 1993;362:155–158.Google Scholar
  44. Gressens P, Marret S, Martin JL, Laquerriere A, Lombret A, Evrard P. Regulation of neuroprotective action of vasoactive intestinal peptide in the murine developing brain by protein kinase C and mitogen-activated protein kinase cascades: in vivo and in vitro studies. J Neurochem 1998;70:2574–2584.PubMedGoogle Scholar
  45. Gressens P, Besse L, Robberecht P, Gozes I, Fridkin M, Evrard P. Neuroprotection of the developing brain by systemic administration of vasoactive intestinal peptide derivatives. J Pharmacol Exp Ther 1999;288:1207–1213.PubMedGoogle Scholar
  46. Gressens P, Arquie C, Hill JM, Marret S, Sahir N, Robberecht P, Evrard P. VIP and PACAP 38 modulate ibotenate-induced neuronal heterotopias in the newborn hamster neocortex. J Neuropathol Exp Neurol 2000;59:1051–1062.PubMedGoogle Scholar
  47. Grimaldi M and Cavallaro S. Functional and molecular diversity of PACAP/VIP receptors in cortical neurons and type I astrocytes. Eur J Neurosci 1999;11:2767–2772.PubMedGoogle Scholar
  48. Grinevich V, Fournier A, Pelletier G. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on corticotropin-releasing hormone (CRH) gene expression in the rat hypothalamic paraventricular nucleus. Brain Res 1997;773:190–196.PubMedGoogle Scholar
  49. Hannibal J, Mikkelsen JD, Clausen H, Hoist JJ, Wulff BS, Fahrenkrug J. Gene expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept 1995a;55:133–148.Google Scholar
  50. Hannibal J, Mikkelsen JD, Fahrenkrug J, Larsen PJ. Pituitary adenylate cyclase-activating peptide gene expression in corticotropin-releasing factor-containing parvicellular neurons of the rat hypothalamic paraventricular nucleus is induced by colchicine, but not by adrenalectomy, acute osmotic, ether, or restraint stress. Endocrinology 1995b;136:4116–4124.PubMedGoogle Scholar
  51. Hannibal J, Jamen F, Nielsen HS, Journot L, Brabet P, Fahrenkrug J. Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J Neurosci 2001;21:4883–4890.PubMedGoogle Scholar
  52. Hansel DE, May V, Eipper BA, Ronnett GV. Pituitary adenylyl cyclase-activating peptides and alpha-amidation in olfactory neurogenesis and neuronal survival in vitro. J Neurosci 2001;21:4625–4636.PubMedGoogle Scholar
  53. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 1998;50:265–270.PubMedGoogle Scholar
  54. Harrington ME, Hogue S, Hall A, Golombek D, Biello S. Pituitary adenylate cyclaseactivating peptide phase shifts circadian rhythms in a manner similar to light. J Neurosci 1999;19: 6637–6642.PubMedGoogle Scholar
  55. Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron 1993;11:333–342.PubMedGoogle Scholar
  56. Hashimoto H Nogi H, Mori K, Ohishi H, Shigemoto R, Yamamoto K, Matsuda T, Mizuno N, Nagata S, Baba A. Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: anin situ hybridization study. J Comp Neurol 1996;371:567–577.PubMedGoogle Scholar
  57. Hill JM, Agoston DV, Gressens P, McCune SK. Distribution of VIP mRNA and two distinct VIP binding sites in the developing rat brain: relation to ontogenic events. J Comp Neurol 1994;342:186–205.PubMedGoogle Scholar
  58. Hill JM, Lee SJ, Dibbern DA Jr, Fridkin M, Gozes I, Brenneman DE. Pharmacologically distinct vasoactive intestinal peptide binding sites: CNS localization and role in embryonic growth. Neuroscience 1999;93:783–791.PubMedGoogle Scholar
  59. Jaworski DM. Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) and the PACAP-selective receptor in cultured rat astrocytes, human brain tumors, and in response to acute intracranial injury. Cell Tissue Res 2000;300:219–230.PubMedGoogle Scholar
  60. Jaworski DM and Proctor MD. Developmental regulation of pituitary adenylate cyclaseactivating polypeptide and PAC(1) receptor mRNA expression in the rat central nervous system. Dev Brain Res 2000;120:27–39.Google Scholar
  61. Jongsma H, Danielsen N, Sundler F, Kanje M. Alteration of PACAP distribution and PACAP receptor binding in the rat sensory nervous system following sciatic nerve transection. Brain Res 2000;853:186–196.PubMedGoogle Scholar
  62. Jongsma H, Pettersson LM, Zhang YZ, Reimer MK, Kanje M, Waldenstrom A, Sundler F, Danielsen N. Markedly reduced chronic nociceptive response in mice lacking the PAC1 receptor. NeuroReport 2001;12:2215–2219.PubMedGoogle Scholar
  63. Just L, Olenik C, Meyer DK. Glial expression of the proenkephalin gene in slice cultures of the subventricular zone. J Mol Neurosci 1998;11:57–66.PubMedGoogle Scholar
  64. Kausz M, Murai Z, Arimura A, Koves K. Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactive elements in the brain stem of rats studied by immunohistochemistry. Neurobiology 1999;7:19–31.PubMedGoogle Scholar
  65. Kim WK, Kan Y, Ganea D, Hart RP, Gozes I, Jonakait GM. Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a cAMP-dependent pathway. J Neurosci 2000;20:3622–3630.PubMedGoogle Scholar
  66. Kimura S, Ohshige Y, Lin L, Okumura T, Yanaihara C, Yanaihara N, Shiotani Y. Localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the hypothalamus-pituitary system in rats: light and electron microscopic immunocytochemical studies. J Neuroendocrinol 1994;6:503–507.PubMedGoogle Scholar
  67. Kivipelto L, Absood A, Arimura A, Sundler F, Hakanson R, Panula P. The distribution of pituitary adenylate cyclase-activating polypeptide-like immunoreactivity is distinct from helodermin-and helospectin-like immunoreactivities in the rat brain. J Chem Neuroanat 1992;5: 85–94.PubMedGoogle Scholar
  68. Koh JY, Palmer E, Cotman CW. Activation of the metabotropic glutamate receptor attenuates N-methyl-D-aspartate neurotoxicity in cortical cultures. Proc Natl Acad Sci USA 1991;88:9431–9435.PubMedGoogle Scholar
  69. Kohlmeier KA and Reiner PB. Vasoactive intestinal polypeptide excites medial pontine reticular formation neurons in the brainstem rapid eye movement sleep-induction zone. J Neurosci 1999; 19:4073–4081.PubMedGoogle Scholar
  70. Kopp MD, Schomerus C, Dehghani F, Korf HW, Meissl H. Pituitary adenylate cyclaseactivating polypeptide and melatonin in the suprachiasmatic nucleus: effects on the calcium signal transduction cascade. J Neurosci 1999;19:206–219.PubMedGoogle Scholar
  71. Ktives K, Arimura A, alms TG, Somogyvari-Vigh A. Comparative distribution of immunoreactive pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 1991;54:159–169.Google Scholar
  72. Kiives K, Giircs TG, Arimura A. Colocalization of PACAP, but not VIP, with oxytocin in the hypothalamic magnocellular neurons of colchicine treated and pituitary stalk sectioned rats. Endocrine 1994;2:1169–1175.Google Scholar
  73. Krebs J. The role of calcium in apoptosis. Biometals 1998;11:375–382.PubMedGoogle Scholar
  74. Laburthe M, Couvineau A, Nicole P. Molecular pharmacology and structure-function analysis of PACAP/VIP receptors. In Pituitary Adenylate Cyclase-Activating Polypeptide, Vaudry H and Arimura A, eds. Boston: Kluwer Academic Publishers, 2002;pp69–67.Google Scholar
  75. Lee M, Lelievre V, Zhao P, Torres M, Rodriguez W, Byun JY, Doshi S, loffe Y, Gupta G, delos Monteros AE, de Vellis J, Waschek J. Pituitary adenylyl cyclase-activating polypeptide stimulates DNA synthesis but delays maturation of oligodendrocyte progenitors. J Neurosci 2001;21:3849–3859.PubMedGoogle Scholar
  76. Legradi G, Shioda S, Arimura A. Pituitary adenylate cyclase-activating polypeptide-like immunoreactivity in autonomic regulatory areas of the rat medulla oblongata. Neurosci Lett 1994;176:193–196.Google Scholar
  77. Legradi G, Hannibal J, Lechan RM. Pituitary adenylate cyclase-activating polypeptide-nerve terminals densely innervate corticotropin-releasing hormone-neurons in the hypothalamic paraventricular nucleus of the rat. Neurosci Lett 1998;246:145–148.PubMedGoogle Scholar
  78. Leibowitz SF. Hypothalamic paraventricular nucleus: interaction between alpha 2- noradrenergic system and circulating hormones and nutrients in relation to energy balance. Neurosci Biobehav Rev 1988;12:101–109.PubMedGoogle Scholar
  79. Li S, Grinevich V, Fournier A, Pelletier G. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on gonadotropin-releasing hormone and somatostatin gene expression in the rat brain. Mol Brain Res 1996;41:157–162.PubMedGoogle Scholar
  80. Lu N and DiCicco-Bloom E. Pituitary adenylate cyclase-activating polypeptide is an autocrine inhibitor of mitosis in cultured cortical precursor cells. Proc Natl Acad Sci USA 1997;94:3357–3362.PubMedGoogle Scholar
  81. Lu N, Zhou R, DiCicco-Bloom E. Opposing mitogenic regulation by PACAP in sympathetic and cerebral cortical precursors correlates with differential expression of PACAP receptor (PAC1-R) isoforms. J Neurosci Res 1998;53:651–662.PubMedGoogle Scholar
  82. Luiten PG, ter Horst GJ, Steffens AB. The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol 1987;28:1–54.PubMedGoogle Scholar
  83. Lutz-Bucher B, Monnier D, Koch B. Evidence for the presence of receptors for pituitary adenylate cyclase-activating polypeptide in the neurohypophysis that are positively coupled to cyclic AMP formation and neurohypophyseal hormone secretion. Neuroendocrinology 1996;64:153–161.PubMedGoogle Scholar
  84. Malagon MM, Castailo JP, Gracia-Navarro S, Martinez-Fuentes AJ, Gracia-Navarro F. Function of PACAP in hypothalamo-pituitary complex. In Pituitary Adenylate CyclaseActivating Polypeptide, Vaudry H and Arimura A, eds. Boston: Kluwer Academic Publishers 2002;pp153–183.Google Scholar
  85. Maronde E, Schomerus C, Stehle JH, Korf HW. Control of CREB phosphorylation and its role for induction of melatonin synthesis in rat pinealocytes. Biol Cell 1997;89:505–511.PubMedGoogle Scholar
  86. Martin JL, Died MM, Hof PR, Palacios JM, Magistretti PJ. Autoradiographic mapping of [mono[125]iodo-TyrMet011vasoactive intestinal peptide binding sites in the rat brain. Neuroscience 1987;23:539–565.PubMedGoogle Scholar
  87. Martin JL, Feinstein DL, Yu N, Sorg 0, Rossier C, Magistretti PJ. VIP receptor subtypes in mouse cerebral cortex: evidence for a differential localization in astrocytes, microvessels and synaptosomal membranes. Brain Res 1992;31:587:1–12Google Scholar
  88. Martin JL, Gasser D, Magistretti PJ. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide potentiatec-fosexpression induced by glutamate in cultured cortical neurons. J Neurochem 1995;65:1–9.PubMedGoogle Scholar
  89. Masuo Y, Ohtaki T, Masuda Y, Tsuda M, Fujino M. Binding sites for pituitary adenylate cyclase-activating polypeptide (PACAP): comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Res 1992;575:113–123.PubMedGoogle Scholar
  90. Masuo Y, Suzuki N, Matsumoto H, Tokito F, Matsumoto Y, Tsuda M, Fujino M. Regional distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) in the rat central nervous system as determined by sandwich-enzyme immunoassay. Brain Res 1993;602:57–63.PubMedGoogle Scholar
  91. Masuo Y, Tokito F, Matsumoto Y, Shimamoto N, Fujino M. Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) and its binding sites in the rat brain. Neurosci Lett 1994;170:43–46.PubMedGoogle Scholar
  92. Mikkelsen JD, Hannibal J, Fahrenkrug J, Larsen PJ, Olcese J, McArdle C. Pituitary adenylate cyclase-activating peptide-38 (PACAP-38), PACAP-27, and PACAP related peptide (PRP) in the rat median eminence and pituitary. J Neuroendocrinol 1995;7:47–55.PubMedGoogle Scholar
  93. Mizuno Y, Kondo K, Terashima Y, Arima H, Murase T, Oiso Y. Anorectic effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in rats: lack of evidence for involvement of hypothalamic neuropeptide gene expression. J Neuroendocrinol 1998;10:611–616.PubMedGoogle Scholar
  94. Mizushima H, Nakamura Y, Matsumoto H, Dohi K, Matsumoto K, Shioda S, Banks WA. The effect of cardiac arrest on the blood-testis barrier to albumin, tumor necrosis factor-alpha, pituitary adenylate cyclase activating polypeptide, sucrose, and verapamil in the mouse. J Androl 2001;22:255–260.PubMedGoogle Scholar
  95. Moller K, Zhang Y-Z, Hakanson R, Luts A, Sjolund B, Uddman R, Sundler F. Pituitary adenylate cyclase-activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience 1993;57:725–732.PubMedGoogle Scholar
  96. Morio H, Tatsuno I, Hirai A, Tamura Y, Saito Y. Pituitary adenylate-cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res 1996;741:82–88.PubMedGoogle Scholar
  97. Morley JE, Horowitz M, Morley PMK, Flood JF. Pituitary adenylate cyclase-activating polypeptide reduces food intake in mice. Peptides 1992;13:1133–1135.PubMedGoogle Scholar
  98. Moroo I, Tatsuno I, Uchida D, Tanaka T, Saito J, Saito Y, Hirai A. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates mitogen-activated protein kinase (MAPK) in cultured rat astrocytes. Brain Res 1998;795:191–196.PubMedGoogle Scholar
  99. Moser A, Scholz J, Gansle A. Pituitary adenylate cyclase-activating polypeptide (PACAP-27) enhances tyrosine hydroxylase activity in the nucleus accumbens of the rat. Neuropeptides 1999;33:492–497.PubMedGoogle Scholar
  100. Mulder H, Uddman R, Moller K, Zhang Y-Z, Ekblad E, Alumets J, Sundler F. Pituitary adenylate cyclase-activating polypeptide expression in sensory neurons. Neuroscience 1994;63:307–312.PubMedGoogle Scholar
  101. Murase T, Kondo K, Otake K, Oiso Y. Pituitary adenylate cyclase-activating polypeptide stimulates arginine vasopressin release in conscious rats. Neuroendocrinology 1993;57:1092–1096.PubMedGoogle Scholar
  102. Nagao H, Matsuoka I, Kurihara K. Effects of adenylyl cyclase-linked neuropeptides on the expression of ciliary neurotrophic factor-mRNA in cultured astrocytes. FEBS Lett 1995;362:75–79.PubMedGoogle Scholar
  103. Narita M, Dun SL, Dun NJ, Tseng LF. Hyperalgesia induced by pituitary adenylate-cyclase-activating polypeptide in the mouse spinal cord. Eur J Pharmacol 1996;311:121–126.PubMedGoogle Scholar
  104. Nicot A and DiCicco-Bloom E. Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proc Natl Acad Sci U S A 2001;98:4758–4763.PubMedGoogle Scholar
  105. Nielsen HS, Hannibal J, Fahrenkrug J. Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in the postnatal and adult rat cerebellar cortex. NeuroReport 1998a;9:2639–2642.Google Scholar
  106. Nielsen HS, Hannibal J, Fahrenkrug J. Embryonic expression of pituitary adenylate cyclaseactivating polypeptide in sensory and autonomic ganglia and in spinal cord of the rat. J Comp Neurol 1998b;394:403–415.Google Scholar
  107. Nielsen HS, Hannibal J, Knudsen SM, Fahrenkrug J. Pituitary adenylate cyclase-activating polypeptide induces periodl and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience 2001;103:433–441.PubMedGoogle Scholar
  108. Nomura M, Ueta Y, Larsen PJ, Hannibal J, Serino R, Kabashima N, Shibuya I, Yamashita H. Water deprivation increases the expression of pituitary adenylate cyclase-activating polypeptide gene in the rat subfornical organ. Endocrinology 1997;138:4096–4100.PubMedGoogle Scholar
  109. Nomura M, Ueta Y, Serino R, Yamamoto Y, Shibuya I, Yamashita H. Effects of centrally administered pituitary adenylate cyclase-activating polypeptide onc-fosgene expression and heteronuclear RNA for vasopressin in rat paraventricular and supraoptic nuclei. Neuroendocrinology 1999;69:167–180.PubMedGoogle Scholar
  110. Otto C, Zuschratter W, Gass P, Schutz G. Presynaptic localization of the PACAP-typel-receptor in hippocampal and cerebellar mossy fibres. Mol Brain Res 1999;66:163–74.PubMedGoogle Scholar
  111. Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, Zuschratter W, Grone HJ, Kellendonk C, Tronche F, Maldonado R, Lipp HP, Konnerth A, Schutz G. Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J Neurosci 2001;21:5520–5527.PubMedGoogle Scholar
  112. Otto C, Martin M, Paul Wolfer D, Lipp H, Maldonado R, Schutz G. Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Mol Brain Res 2001;92:78–84.PubMedGoogle Scholar
  113. Palkovits M, Somogyvari-Vigh A, Arimura A. Concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) in human brain nuclei. Brain Res 1995;699:116–120.PubMedGoogle Scholar
  114. Pei L. Genomic structure and embryonic expression of the rat type 1 vasoactive intestinal polypeptide receptor gene. Regul Pept 1997;71:153–161.PubMedGoogle Scholar
  115. Pellegri G, Magistretti PJ, Martin JL. VIP and PACAP potentiate the action of glutamate on BDNF expression in mouse cortical neurones. Eur J Neurosci 1998;10:272–280.PubMedGoogle Scholar
  116. Piggins HD, Stamp JA, Burns J, Rusak B, Semba K. Distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. J Comp Neurol 1996;376:278–294.PubMedGoogle Scholar
  117. Puig De Parada M, Parada MA, Hernandez L. Dipsogenic effect of pituitary adenylate cyclase-activating polypeptide (PACAP38) injected into the lateral hypothalamus. Brain Res 1995;696:254–257.PubMedGoogle Scholar
  118. Reglodi D, Somogyvari-Vigh A, Vigh S, Kozicz T, Arimura A. Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 2000;31:1411–1417.PubMedGoogle Scholar
  119. Ribelayga C, Pevet P, Simonneaux V. Adrenergic and peptidergic regulations of hydroxyindole-O-methyltransferase activity in rat pineal gland. Brain Res 1997;777:247–250.PubMedGoogle Scholar
  120. Roberto M and Brunelli M. PACAP-38 enhances excitatory synaptic transmission in the rat hippocampal CAI region. Learn Mem 2000;7:303–311.PubMedGoogle Scholar
  121. Roth BL and Beinfeld MC. The postnatal development of VIP binding sites in rat forebrain and hindbrain. Peptides 1985;6:27–30.PubMedGoogle Scholar
  122. Sacchetti B, Lorenzini CA, Baldi E, Bucherelli C, Roberto M, Tassoni G, Brunelli M. Pituitary adenylate cyclase-activating polypeptide hormone (PACAP) at very low dosages improves memory in the rat. Neurobiol Learn Mem 2001;76:1–6.PubMedGoogle Scholar
  123. Sagara Y and Schubert D. The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J Neurosci 1998;18:6662–6671.PubMedGoogle Scholar
  124. Sakashita Y, Kurihara T, Uchida D, Tatsuno I, Yamamoto T. Involvement of PACAP receptor in primary afferent fibre-evoked responses of ventral roots in the neonatal rat spinal cord. Br J Pharmacol 2001;132:1769–76.PubMedGoogle Scholar
  125. Schafer H, Schwarzhoff R, Creutzfeldt W, Schmidt WE. Characterization of a guanosinenucleotide-binding-protein-coupled receptor for pituitary adenylate cyclase-activating polypeptide on plasma membranes from rat brain. Eur J Biochem 1991;202:951–958.PubMedGoogle Scholar
  126. Schomerus E, Maronde E, Laedtke E, Korf HW. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) induce phosphorylation of the transcription factor CREB in subpopulations of rat pinealocytes: immunocytochemical and immunochemical evidence. Cell Tissue Res 1996;286:305–313.PubMedGoogle Scholar
  127. Shen S, Spratt C, Sheward WJ, Kallo I, West K, Morrison CF, Coen CW, Marston HM, Harmar AJ. Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc Natl Acad Sci USA 2000;97:11575–11580.PubMedGoogle Scholar
  128. Sheward WJ, Lutz EM, Harmar AJ. The distribution of vasoactive intestinal peptide2 receptor messenger RNA in the rat brain and pituitary gland as assessed by in situ hybridization. Neuroscience 1995;67:409–418.PubMedGoogle Scholar
  129. Sheward WJ, Lutz EM, Copp AJ, Harmar AJ. Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Dev Brain Res 1998;109:245–253.Google Scholar
  130. Shibuya I, Noguchi J, Tanaka K, Harayama N, Inoue Y, Kabashima N, Ueta Y, Hattori Y, Yamashita H. PACAP increases the cytosolic Ca2+concentration and stimulates somatodendritic vasopressin release in rat supraoptic neurons. J Neuroendocrinol 1998;10:31–42.PubMedGoogle Scholar
  131. Shibuya I, Kabashima N, Ibrahim N, Setiadji SV, Ueta Y, Yamashita H. Pre-and postsynaptic modulation of the electrical activity of rat supraoptic neurones. Exp Physiol 2000;85:145S–151S.PubMedGoogle Scholar
  132. Shin CM, Chung YH, Kim MJ, Cha CI. Spatial and temporal distribution of pituitary adenylate cyclase activating polypeptide in gerbil global cerebral ischemia. Neurosci Lett 2001;309:53–56.PubMedGoogle Scholar
  133. Shinohara K, Funabashi T, Kimura F. Temporal profiles of vasoactive intestinal polypeptide precursor mRNA and its receptor mRNA in the rat suprachiasmatic nucleus. Mol Brain Res 1999;63:262–267.PubMedGoogle Scholar
  134. Shioda S, Shuto Y, Somogyvari-Vigh A, Legradi G, Onda H, Coy DH, Nakajo S, Arimura A. Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain. Neurosci Res 1997a;28:345–354.Google Scholar
  135. Shioda S, Yada T, Nakajo S, Nakaya K, Nakai Y, Arimura A. Pituitary adenylate cyclaseactivating polypeptide (PACAP): a novel regulator of vasopressin-containing neurons. Brain Res 1997b;765:81–90.Google Scholar
  136. Shuto Y, Uchida D, Onda H, Arimura A. Ontogeny of pituitary adenylate cyclase-activating polypeptide and its receptor mRNA in the mouse brain. Regul Pept 1996;67:79–83.PubMedGoogle Scholar
  137. Simonneaux V, Ouichou A, Pevet P. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates melatonin synthesis from rat pineal gland. Brain Res 1993;603:148–152.PubMedGoogle Scholar
  138. Simonneaux V, Kienlen-Campard P, Loeffler J-P, Basille M, Gonzalez BJ, Vaudry H, Robberecht P, Pevet P. Pharmacological, molecular and functional characterization of VIP/PACAP receptors in the rat pineal gland. Neuroscience 1998;85:887–896.PubMedGoogle Scholar
  139. Skoglosa Y, Takei N, Lindholm D. Distribution of pituitary adenylate cyclase-activating polypeptide mRNA in the developing rat brain. Mol Brain Res 1999a;65:1–13.Google Scholar
  140. Skoglosa Y, Patrone C, Lindholm D. Pituitary adenylate cyclase-activating polypeptide is expressed by developing rat Purkinje cells and decreases the number of cerebellar gamma-amino butyric acid positive neurons in culture. Neurosci Lett 1999b;265:207–210.Google Scholar
  141. Skogliisa Y, Lewen A, Takei N, Hillered L, Lindholm D. Regulation of pituitary adenylate cyclase-activating polypeptide and its receptor type 1 after traumatic brain injury: comparison with brain-derived neurotrophic factor and the induction of neuronal cell death. Neuroscience 1999c;90:235–247.Google Scholar
  142. Somogyvari-Vigh A, Pan W, Reglodi D, Kastin AJ, Arimura A. Effect of middle cerebral artery occlusion on the passage of pituitary adenylate cyclase activating polypeptide across the blood-brain barrier in the rat. Regul Pept 2000;91:89–95.PubMedGoogle Scholar
  143. Spong CY, Lee SJ, McCune SK, Gibney G, Abebe DT, Alvero R, Brenneman DE, Hill JM. Maternal regulation of embryonic growth: the role of vasoactive intestinal peptide. Endocrinology 1999;140:917–924.PubMedGoogle Scholar
  144. Stella N and Magistretti PJ. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) potentiate the glutamate-evoked release of arachidonic acid from mouse cortical neurons. Evidence for a cAMP-independent mechanism. J Biol Chem 1996;271:705–710.Google Scholar
  145. Suh J, Lu N, Nicot A, Tatsuno I, DiCicco-Bloom E. PACAP is an anti-mitogenic signal in developing cerebral cortex. Nat Neurosci 2001;4:123–124.PubMedGoogle Scholar
  146. Tabuchi A, Koizumi M, Tsuda M. Novel splice variants of PACAP gene in mouse cerebellar granule cells. NeuroReport 2001a;12:1181–1186.Google Scholar
  147. Tabuchi A, Koizumi M, Nakatsubo J, Yaguchi T, Tsuda M. Involvement of endogenous PACAP expression in the activity-dependent survival of mouse cerebellar granule cells. Neurosci Res 2001b;39:85–93.Google Scholar
  148. Takahashi K, Totsune K, Murakami 0, Satoh F, Sone M, Ohneda M, Sasano H and Mouri T. Pituitary adenylate cyclase-activating polypeptide (PACAP)-like immunoreactivity in human hypothalamus: co-localization with arginine vasopressin. Regul Pept 1994;50:267–275.PubMedGoogle Scholar
  149. Takei N, Skoglosa Y, Lindholm D. Neurotrophic and neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on mesencephalic dopaminergic neurons. J Neurosci Res 1998;54:698–706.PubMedGoogle Scholar
  150. Takei N, Torres E, Yuhara A, Jongsma H, Otto C, Korhonen L, Abiru Y, Skoglosa Y, Schutz G, Hatanaka H, Sofroniew MV, Lindholm D. Pituitary adenylate cyclase-activating polypeptide promotes the survival of basal forebrain cholinergic neurons in vitro and in vivo: comparison with effects of nerve growth factor. Eur J Neurosci 2000;12:2273–2280.PubMedGoogle Scholar
  151. Tams JW, Johnsen AH, Fahrenkrug J. Identification of pituitary adenylate cyclase-activating polypeptide 1–38-binding factor in human plasma, as ceruloplasmin. Biochem J 1999;341:271–276.PubMedGoogle Scholar
  152. Tatsuno I, Gottschall PE, KOves K, Arimura A. Demonstration of specific binding sites for pituitary adenylate cyclase-activating polypeptide (PACAP) in rat astrocytes. Biochem Biophys Res Commun 1990;168:1027–1033.PubMedGoogle Scholar
  153. Tatsuno I, Gottschall PE, Arimura A. Specific binding sites for pituitary adenylate cyclaseactivating polypeptide (PACAP) in rat cultured astrocytes: molecular identification and interaction with vasoactive intestinal peptide (VIP). Peptides 1991;12:617–621.PubMedGoogle Scholar
  154. Tatsuno I, Somogyvari-Vigh A, Arimura A. Developmental changes of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor in the rat brain. Peptides 1994;15:55–60.PubMedGoogle Scholar
  155. Tatsuno I and Arimura A. Pituitary adenylate cyclase-activating polypeptide (PACAP) mobilizes intracellular free calcium in cultured type-2, but not type-1, astrocytes. Brain Res 1994;662:1–10.Google Scholar
  156. Tatsuno I, Uchida D, Tanaka T, Saeki N, Hirai A, Saito Y, Moro 0, Tajima M. Maxadilan specifically interacts with PAC1 receptor, which is a dominant form of PACAPNIP family receptors in cultured rat cortical neurons. Brain Res 2001;889:138–148.PubMedGoogle Scholar
  157. Uchida D, Arimura A, Somogyvari-Vigh A, Shioda S, Banks W. (1996) Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase-activating polypeptide. Brain Res 736:280–286.PubMedGoogle Scholar
  158. Uchimura D, Katafuchi T, Hori T, Yanaihara N. Facilitatory effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on neurons in the magnocellular portion of the rat hypothalamic paraventricular nucleus (PVN)in vitro.J Neuroendocrinol 1996;8:137–143.Google Scholar
  159. Usdin TB, Bonner TI, Mezey E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 1994;135:2662–2680.PubMedGoogle Scholar
  160. Vaudry D, Basille M, Anouar Y, Fournier A, Vaudry H, Gonzalez BJ. The neurotrophic activity of PACAP on rat cerebellar granule cells is associated with activation of the protein kinase A pathway andc-fosgene expression. Ann NY Acad Sci 1998a;865:92–99.Google Scholar
  161. Vaudry D, Gonzalez BJ, Basille M, Anouar Y, Fournier A, Vaudry H. PACAP stimulates bothc-fosgene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience 1998b;84:801–812.Google Scholar
  162. Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H. Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci USA 1999;96:9415–9420.PubMedGoogle Scholar
  163. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 2000a;52:269–324.Google Scholar
  164. Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Fournier A, Vaudry H. The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci USA 2000b;97:13390–13395.Google Scholar
  165. Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Vaudry H. Le PACAP: du facteur hypophysiotrope au neuropeptide antiapoptotique. Med/Sci 2001;17:659–662.Google Scholar
  166. Vaudry D, Rousselle C, Basille M, Falluel A, Pamantung TF, Fontaine M, Fournier A, Vaudry H, Gonzalez BJ. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc Natl Acad Sci USA 2002a;99:6398–6403.Google Scholar
  167. Vaudry D, Pamantung TF, Basille M, Rousselle C, Fournier A, Vaudry H, Gonzalez BJ. PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur J Neurosci 2002b;15:1451–1460.Google Scholar
  168. Vertongen P, Schiffmann SN, Gourlet P, Robberecht P. Autoradiographic visualization of the receptor subclasses for vasoactive intestinal polypeptide (VIP) in rat brain. Peptides 1997;18:1547–1554.PubMedGoogle Scholar
  169. Vertongen P, Schiffmann SN, Gourlet P, Robberecht P. Autoradiographic visualization of the receptor subclasses for vasoactive intestinal polypeptide (VIP) in rat brain. Ann N Y Acad Sci 1998;865:412–415.PubMedGoogle Scholar
  170. Villalba M, Bockaert J, Journot L. Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J Neurosci 1997;17:83–90.PubMedGoogle Scholar
  171. Von Gall C, Duffield GE, Hastings MH, Kopp MD, Dehghani F, Korf HW, Stehle JH. CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J Neurosci 1998;18:10389–10397.PubMedGoogle Scholar
  172. Wang HL, Li A, Wu T. Vasoactive intestinal polypeptide enhances the GABAergic synaptic transmission in cultured hippocampal neurons. Brain Res 1997;746:294–300.PubMedGoogle Scholar
  173. Waschek JA, Casillas RA, Nguyen TB, DiCicco-Bloom EM, Carpenter EM, Rodriguez WI. Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Proc Natl Acad Sci USA 1998;95:9602–9607.PubMedGoogle Scholar
  174. Xu X-J and Wiesenfeld-Hallin Z. Intrathecal pituitary adenylate-cyclase-activating polypeptide facilitates the spinal nociceptive flexor reflex in the rat. Neuroscience 1996;72:801–804.PubMedGoogle Scholar
  175. Yamamoto T and Tatsuno I. Antinociceptive effect of intrathecally administered pituitary adenylate cyclase-activating polypeptide (PACAP) on the rat formalin test. Neurosci Lett 1995;184: 32–35.PubMedGoogle Scholar
  176. Yashpal K, Sarrieau A, Quirion R.[12511vasoactive intestinal polypeptide binding sites: quantitative autoradiographic distribution in the rat spinal cord. J Chem Neuroanat 1991;4:439–446.PubMedGoogle Scholar
  177. Yuwiler A, Brammer GL, Bennett BL. Interaction between adrenergic and peptide stimulation in the rat pineal: pituitary adenylate cyclase-activating peptide. J Neurochem 1995;64:2273–2280.PubMedGoogle Scholar
  178. Zerr P and Feltz A. Forskolin blocks the transient K current of rat cerebellar granule neurons. Neurosci Lett 1994;181:153–157.PubMedGoogle Scholar
  179. Zhang YZ, Sjolund B, Moller K, Hakanson R, Sundler F. Pituitary adenylate cyclase activating peptide produces a marked and long-lasting depression of a C-fibre-evoked flexion reflex. Neuroscience 1993;57:733–737.PubMedGoogle Scholar
  180. Zhang Y-Z, Hannibal J, Zhao Q, Moller K, Danielsen N, Fahrenkrug J, Sundler F. Pituitary adenylate cyclase-activating peptide expression in the rat dorsal root ganglia: up-regulation after peripheral nerve injury. Neuroscience 1996;74:1099–1110.PubMedGoogle Scholar
  181. Zhou CJ, Shioda S, Shibanuma M, Nakajo S, Funahashi H, Nakai Y, Arimura A, Kikuyama S. Pituitary adenylate cyclase-activating polypeptide receptors during development: expression in the rat embryo at primitive streak stage. Neuroscience 1999a;93:375–391.Google Scholar
  182. Zhou X, Rodriguez WI, Casillas RA, Ma V, Tam J, Hu Z, Lelievre V, Chao A, Waschek JA. Axotomy-induced changes in pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP receptor gene expression in the adult rat facial motor nucleus. J Neurosci Res 1999b;57:953–961.Google Scholar
  183. Zhou CJ, Kikuyama S, Shibanuma M, Hirabayashi T, Nakajo S, Arimura A, Shioda S. Cellular distribution of the splice variants of the receptor for pituitary adenylate cyclaseactivating polypeptide (PAC(1)-R) in the rat brain by in situ RT-PCR. Mol Brain Res 2000;75:150–158.PubMedGoogle Scholar
  184. Zupan V, Hill JM, Brennemam DE, Gozes I, Fridkin M, Robberecht P, Evrard P, Gressens P. Involvement of pituitary adenylate cyclase-activating polypeptide II vasoactive intestinal peptide 2 receptor in mouse neocortical astrocytogenesis. J Neurochem 1998;70:2165–2173.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • B. J. Gonzalez
    • 1
  • D. Vaudry
    • 1
  • M. Basille
    • 1
  • C. Rousselle
    • 1
  • A. Falluel-Morel
    • 1
  • H. Vaudry
    • 1
  1. 1.INSERM U413, IFRMP23University of Rouen 76821 Mont-Saint-AignanFrance

Personalised recommendations