Function of PACAP in the Respiratory System

  • J. C. Prieto
Part of the Endocrine Updates book series (ENDO, volume 20)


Since the discovery of the activity of vasoactive intestinal peptide (VIP) as a vasodilator peptide in the lung (Said, 1967) and its subsequent isolation from the small intestine (Said and Mutt, 1970), a rich array of studies has characterized the presence and/or the regulatory role of many other neuropeptides in the respiratory system (Boonsma and Said, 1992; Said, 1995; Maggi et al, 1995; Van der Velden et al, 1999). The observation of the potent anti-asthma and anti-inflammatory effects of VIP in the lung and airways was confirmed with other VIP-related peptides that possess common mechanisms of action (Said, 1992; Maggi et al, 1995).


Vasoactive Intestinal Peptide Airway Smooth Muscle Vasoactive Intestinal Polypeptide Pituitary Adenylate Cyclase Activate Polypeptide Small Cell Lung Cancer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizawa H, Shigyo M, Matsumoto K, Inoue H, Koto H, Hara N. PACAP responses airway hyperresponsiveness induced by ozone exposure in guinea pigs. Respiration 1999;66:538–542.PubMedCrossRefGoogle Scholar
  2. Araki N, Takagi K. Relaxant effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on guinea pig tracheal smooth muscle. Eur J Pharmacol 1992;216:113–117.PubMedCrossRefGoogle Scholar
  3. Arimura A, Somogyvari-Vigh, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 1991;129:2787–2789.PubMedCrossRefGoogle Scholar
  4. Arimura A, Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Frontiers Neuroendocrinol 1995;16:53–88.CrossRefGoogle Scholar
  5. Arimura A. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Japan J Physiol 1998;48:301–331.CrossRefGoogle Scholar
  6. Barnes P, Chung KF, Page CF. Inflammatory mediators and asthma. Pharmacol Rev 1988;40:49–84.PubMedGoogle Scholar
  7. Bhogal R, Sheldrick RL, Coleman RA, Smith DM, Bloom SR. The effects of PACAP and VIP on guinea pig tracheal smooth muscle in vitro. Peptides 1994;15:1237–1241.PubMedCrossRefGoogle Scholar
  8. Bitar KG, Coy DH,. Interaction of ovine pituitary adenylate cyclase-activating peptide (PACAP-38) with rat lung membranes. Peptides 1993;14:621–627.PubMedCrossRefGoogle Scholar
  9. Bolin DR, Michalewsky J, Waserman MA, O’Donnell M. Design and development of a vasoactive intestinal peptide analog as a novel therapeutic for bronchial asthma. Biopolymers 1995;37:57–66.PubMedCrossRefGoogle Scholar
  10. Boonsma JD, Said SI. The role of neuropeptides in asthma. Chest 1992;101:389S–392S.Google Scholar
  11. Bruch L, Rubel S, Kastner A, Gellert K, Gollasch M, Witt C. Pituitary adenylate cyclase activating peptides relax human pulmonary arteries by opening of KATPand Kcachannels. Thorax 1998;53:586–587.PubMedCrossRefGoogle Scholar
  12. Busto R, Carrero I, Guijarro LG, Solano RM, Zapatero J, Noguerales F, Prieto JC. Expression, pharmacological, and functional evidence for PACAPNIP receptors in human lung. Am J Physiol 1999;277:L42–L48.PubMedGoogle Scholar
  13. Busto R, Carrero I, Zapata P, Colas B, Prieto JC. Multiple regulation of adenylyl cyclase activity by G-protein coupled receptors in human foetal lung fibroblasts. Regul Peptides 2000a;95:53–58.CrossRefGoogle Scholar
  14. Busto R, Prieto JC, Bodega G, Zapatero J, Carrero I. Immunohistochemical localization and distribution of VIP/PACAP receptors in human lung. Peptides;2000b;21:265–269.CrossRefGoogle Scholar
  15. Busto R, Carrero I, Bodega G, Zapatero J, Prieto JC. Immunohistochemical and immunochemical evidence for expression of human lung PACAP/VIP recptors. Ann N Y Acad Sci 2000;921:308–311.PubMedCrossRefGoogle Scholar
  16. Cardell LO, Uddman R, Luts A, Sundler F. pituitary adenylate cyclase activating peptide (PACAP) in guinea-pig lung: distribution and dilatory effects. Regul Peptides 1991;36:379–390.CrossRefGoogle Scholar
  17. Cardell LO, Sundler F, Uddman R. Helospectin/helodermin-like peptides in guinea pig lung: distribution and dilatory effects. Regul Peptides 1993;45:435–443.CrossRefGoogle Scholar
  18. Cardell LO, Hjert 0, Uddman R. The induction of nitric oxide-mediated relaxation of human isolated pulmonary arteries by PACAP. Br J Pharmacol 1997;120:1096–1100.PubMedCrossRefGoogle Scholar
  19. Chatterjee TK, Sharma RV, Fisher RA. Molecular cloning of a novel variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor that stimulates calcium influx by activation of L-type calcium channels. J Biol Chem 1996;271:32226–32232.PubMedCrossRefGoogle Scholar
  20. Cheng DY, McMahon TJ, Dewitz BJ, Carroll GC, Lee SS, Murphy WA, Bitar KG, Coy DH, Kadowitz PJ. Comparison of responses to pituitary adenylate cyclase activating peptides 38 and 27 in the pulmonary vascular bed of the cat. Eur J Pharmacol 1993;243:79–82.PubMedCrossRefGoogle Scholar
  21. Conroy DM, St-Pierre S, Sirois P. Relaxant effects of pituitary adenylate cyclase activating polypeptide (PACAP) on epithelium-intact and —denuded guinea-pig trachea: a comparison with vasoactive intestinal peptide (VIP). Neuropeptides 1995;29:121–127.PubMedCrossRefGoogle Scholar
  22. Draoui M, Hide T, Jakowlew S, Birrer M, Zia F, Moody TW. PACAP stimulates c-fos mRNAs in small cell lung cancer cells. Life Sci 1996;59:307–313.PubMedCrossRefGoogle Scholar
  23. Foda H, Sharaff HH, Absood A, Said S. pituitary adenylate cyclase-activating peptide (PACAP), a VIP-like peptide, has prolonged airway smooth muscle relaxant activity. Peptides 1995;16:1057–1061.PubMedCrossRefGoogle Scholar
  24. Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR. Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide (PACAP) and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol 1993;136:159–166.PubMedCrossRefGoogle Scholar
  25. Gonzalez BJ, Basille M, Vaudry D, Fournier A, Vaudry H. Pituitary adenylate cyclaseactivating polypeptide. Annal Endocrinol (Paris) 1998;59:364–405.Google Scholar
  26. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA. Nomenclature of receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP). Pharmacol Rev 1998;50:265–270.PubMedGoogle Scholar
  27. Hashimoto H, Ishihara T, Shigemoto R. Mori K, Nagata S. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron 1993;11:333–342.PubMedCrossRefGoogle Scholar
  28. Hauser-Kronberger C, Hacker GW, Albegger K, Muss WH, Sundler F, Arimura A, Dietze 0. Bistribution of two VIP-related peptides, helospectin and pituitary adenylate cyclase activating peptide (PACAP), in the human upper respiratory system. Regul Peptides 1996;65:203–209.CrossRefGoogle Scholar
  29. Hiramatsu T: Kume H, Yamaki K, Takagi K. Inhibition of pituitary adenylate cyclase activating polypeptide induced relaxation of guinea-pig tracheal smooth muscle by charybdotoxin. Arzneimittelforschung 1995;45:689–692.PubMedGoogle Scholar
  30. Hosoya M, Onda H, Ogi K, Masuda Y, Miyamoto Y, Ohtaki T, Okazaki H, Arimura A, Fujino M. Molecular cloning and functional expression of rat cDNAs encoding the receptor for pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun 1993;194:133–143.PubMedCrossRefGoogle Scholar
  31. Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 1992;8:811–819.PubMedCrossRefGoogle Scholar
  32. Kanemura T, Tamaoki J, Chiyotani A, Takeyama K, Sakai N, Tagaya E, Konno K. Role of Na+-K+-ATPase in airway smooth muscle relaxation by vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide. Res Commun Chem Pathol Pharmacol 1993;79:11–22.PubMedGoogle Scholar
  33. Kinhult J, Andersson JA, Uddman R, Stajarne P, Cardell LO. Pituitary adenylate cyclaseactivating peptide 38 a potent endogenously produced dilator of human airways. Eur Respir J 2000;15:243–247.CrossRefGoogle Scholar
  34. Kinhult J, Uddman R, Cardell LO. The induction of carbon monoxide-mediated airway relaxation by PACAP 38 in isolated guinea pig airways. Lung 2001;179:1–8.PubMedCrossRefGoogle Scholar
  35. Lam HC, Takahashi K, Ghatei MA, Kanse SM, Polak JM, Bloom SR. Binding sites of a novel neuropeptide pituitary-adenylate cyclase-activating polypeptide in the rat brain and lung. Eur J Biochem 1990;193:725–729.PubMedCrossRefGoogle Scholar
  36. Linden A, Cardell LO, Yoshihara S, Nadel JA. Pituitary adenylate cyclase-activating peptide (PACAP) related molecules as bronchodilators. Eur Respir J 1999;14:449–451.CrossRefGoogle Scholar
  37. Linden A, Cardell LO, Yoshihara S, Stjarne P, Nadel JA. PACAP 1–38 as an inhaled bronchodilator in guinea pigs in vivo. Peptides 1998;19:93–98.PubMedCrossRefGoogle Scholar
  38. Linden A, Yoshihara S, Cardell LO, Kaneko T, Stjarne P, Nadel JA. Functional type II VIP-PACAP receptors in human airway epithelial-like cells. Peptides 1997;18:843–846. Linden L. PACAPs-potential for bronchodilation. Pulm Pharmacol Ther 1999;12:229–236.PubMedCrossRefGoogle Scholar
  39. Linden L, Yoshihara S, Chan B, Nadel JA. Inhibition of bronchoconstriction by pituitary adenylate cyclase activating polypeptide (PACAP 1–27) in guinea-pigs in vivo. Br J Pharmacol 1995;115:913–916.PubMedCrossRefGoogle Scholar
  40. Liu YC, Khawaja AM, Rogers DF. Effect of vasoactive intestinal peptide (VIP)-related peptides on cholinergic neurogenic and direct mucus secretion in ferret trachea in vitro. Br J Pharmacol 1999;128:50–56.Google Scholar
  41. Luts A, Uddman R, Alm P, Basterra J, Sundler F. Peptide-containing nerve fibers in human airways: distribution and coexistence pattern. Int Arch Allergy Immunol 1993;101:52–60.PubMedCrossRefGoogle Scholar
  42. Maggi CA, Giachetti A, Dey RD, Said SI. Neuropeptides as regulators of airway function: vasoactive intestinal peptide and the tachykinins. Physiol Rev 1995;75:277–322.PubMedGoogle Scholar
  43. Maruno K, Absood A, Said SI. VIP inhibits basal and histamine-stimulated proliferation on human airway smooth muscle cells. Am J Physiol 1995;268:L1047–L1051.PubMedGoogle Scholar
  44. McMahon TJ, Kadowitz PJ. Methylene blue inhibits neurogenic cholinergic vasodilator responses in the pulmonary vascular bed of the cat. Am J Physiol 1992;263:L575–L584.PubMedGoogle Scholar
  45. McMahon TJ, Kadowitz PJ. Analysis of responses to substance P in the pulmonary vascular bed of the cat. Am J Physiol 1993;264:H394–H402.PubMedGoogle Scholar
  46. Meyer M, Fluge T, Kruhoffer M, Forssmann WG. Basic aspects of vasorelaxant and bronchodilating peptides in clinical use: urodilatin (INN: Ularitide), VIP, and PACAP. Ann N Y Acad Sci 1996;805:443–461.PubMedCrossRefGoogle Scholar
  47. Minkes RK, McMahon TJ, Hood JS, Murphy WA, Coy DH, McNamara DB, Kadowitz PJ. Differential effects of PACAP and VIP on the pulmonary and hindquarters vascular beds of the cat. J Appl Physiol 1992;72:1212–1217.PubMedGoogle Scholar
  48. Miyata A, Sato K, Hino J, Tamakawa H, Matsuo H, Kangawa K. Rat aortic smooth muscle cell proliferation is bidirectionally regulated in a cell cycle-dependent manner via PACAPNIP type 2 receptor. Ann N Y Acad Sci 1998;865:73–81.PubMedCrossRefGoogle Scholar
  49. Moller K, Zhang YZ, Hakanson R, Luts A, Sjolund B, Uddman R, Sundler F. Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience 1993;57:725–732.PubMedCrossRefGoogle Scholar
  50. Moody TW, Zia F, Makheja A. Pituitary adenylate cyclase activating polypeptide receptors are present on small cell lung cancer cells. Peptides 1993a;14:241–246.CrossRefGoogle Scholar
  51. Moody TW, Zia F, Makheja A. PACAP elevates cytosolic calcium in small cell lung cancer cell lines. Peptides 1993b;14:241–246.CrossRefGoogle Scholar
  52. Moody TW. Peptides and growth factors in non-small cell lung cancer. Peptides 1996;17:545–555.PubMedCrossRefGoogle Scholar
  53. Moody TW, Leyton J, Coelho T, Jakowlev S, Takahashi K, Jameison F, Koh M, Fridkin M, Gozes I, Knight M. (Stearyl,norleuciner)VIP hybrid antagonizes VIP receptors on non-small cell lung cancer cells. Life Sci 1997;61:1657–1666.PubMedCrossRefGoogle Scholar
  54. Moody TW, Walters J, Casibang M, Zia F, Gozes Y. VPAC1 receptors and lung cancer. Ann N Y Acad Sci 2000;921:26–32.PubMedCrossRefGoogle Scholar
  55. Naruse S, Sazi T, Ozaki T, Nokihara K, Wray V. The effect of PACAP and VIP on isolated guinea pig pulmonary artery. Biomed Res 1994;15(Suppl 2):217–219.Google Scholar
  56. Nokihara AE, Naruse S. Development of pituitary adenylate cyclase activating polypeptides (PACAPs) specific radioimmunoassay systems and distribution of PACAP-like immunoreactivity in guinea pig tissues. Biomed Pept Proteins Nucleic Acids 1994;1:45–50.PubMedGoogle Scholar
  57. Ogi K, Miyamoto Y, Masuda Y, Habata Y, Hosoya M, Ohtaki T, Masuo Y, Onda H, Fujino M. Molecular cloning and functional expression of a cDNA encoding a human pituitary adenylate cyclase activating polypeptide receptor. Biochem Biophys Res Commun 1993;196:1511–1521.PubMedCrossRefGoogle Scholar
  58. Oiso Y, Kotoyori J, Murase T, Ito Y, Kozawa O. Effect of pituitary adenylate cyclase activating polypeptide on vasopressin-induced proliferation of aortic smooth muscle cells: comparison with vasoactive intestinal peptide. Biochem Cell Biol 1993;71:156–161.PubMedCrossRefGoogle Scholar
  59. Okazawa A, Cui ZH, Lotwall J, Yoshihara S, Skoogh BE, Kashimoto K, Linden A. Effect of a novel PACAP-27 analogue on muscarinic airway responsiveness in guinea pigs in vivo. Eur Respir J 1998;12:1062–1066.PubMedCrossRefGoogle Scholar
  60. Peeters K, Gerets HH, Princen K, Vandesande F. Molecular cloning and expression of a chicken Pituitary adenylate cyclase-activating polypeptide receptor. Brain Res Mol Brain Res 1999;71:244–255.PubMedCrossRefGoogle Scholar
  61. Reubi JC. In vitro identification of vasoactive intestinal peptide receptors in human tumors: implications for tumor imaging. J Nuclear Med 1995;36:1846–1853.Google Scholar
  62. Reubi JC, Laderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA. Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res 2000;60:3105–3112.PubMedGoogle Scholar
  63. Saguchi Y, Ando T, Watanabe T, Yamaki K, Suzuki R, Takagi K. Inhibitory effects of pituitary adenylate cyclase activating polypeptide on histamine-induced respiratory resistance in anesthetized guinea pigs. Regul Peptides 1997;70:9–13.CrossRefGoogle Scholar
  64. Said SI. Vasoactive substances in the lung. In Proceedings of the Tenth Aspen Emphysema Conference, Aspen, Colorado, June 7–10, 1967. US Public Health Service Publication 1967;1787:pp223–228.Google Scholar
  65. Said SI. Vasoactive intestinal peptide (VIP) and related peptides as anti-asthma and anti-inflammatory agents. Biomed Res 1992;13:257–262.Google Scholar
  66. Said SI. Vasoactive intestinal peptide. In Airways Smooth Muscle: peptide receptors, ion channels and signal transduction, Raebun D, Giembycz MA, eds. Basel: Birkhauser Verlag 1995:pp87–113.CrossRefGoogle Scholar
  67. Said SI, Dickman K, Dey RD, Bandyopadhyay A, De Stefanis P, Raza S, Pakbaz H, Berisha HI. Glutamate toxicity in the lung and neuronal cells: prevention or attenuation by VIP and PACAP. Ann N Y Acad Sci 1998;865:226–237.PubMedCrossRefGoogle Scholar
  68. Said SI, Mutt V. Polypeptide with broad biological activity: isolation from small intestine. Science 1970;169:1217–1218.PubMedCrossRefGoogle Scholar
  69. Saotone M, Uchida Y, Nomura A, Endo T, Hasegawa S. Pituitary adenylate cyclaseactivating peptide induces cGMP-mediated relaxation in guinea-pig airways. Pulm Pharmacol Ther 1998;11:281–285.CrossRefGoogle Scholar
  70. Shigyo M, Aizawa H, Inoue H, Matsumoto K, Takata S, Hara N. Pituitary adenylate cyclase activating peptide regulates neurally mediated airway responses. Eur Respir J 1998;12:64–70.PubMedCrossRefGoogle Scholar
  71. Shivers BD, Gores TJ, Gottschall PE, Arimura A. Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology 1991;128:3005–3065.CrossRefGoogle Scholar
  72. Sreedharan SP, Patel DR, Huang JX, Goetzl EJ. Cloning and functional expression of human neuroendocrine vasoactive intestinal peptide receptor. Biochem Biophys Res Commun 1993;193:546–553.PubMedCrossRefGoogle Scholar
  73. Uddman R, Alumets J, Densert 0, Hakanson R, Sundler F. Occurrence and distribution of VIP nerves in the nasal mucosa and tracheobronchial wall. Acta Otolaryngol 1978;86:443–448.PubMedGoogle Scholar
  74. Uddman R, Luts A, Arimura A, Sundler F. Pituitary adenylate cyclase-activating peptide (PACAP), a new vasoactive intestinal peptide (VIP)-like peptide in the respiratory tract. Cell Tissue Res 1991;265:197–201.PubMedCrossRefGoogle Scholar
  75. Usdin TB, Bonner TI, Mezey E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 1994;135:2662–2680.PubMedCrossRefGoogle Scholar
  76. Van der Velden VHJ, Hulsmann AR. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma. Neuroimmunomodulation 1999;6:145–159.PubMedCrossRefGoogle Scholar
  77. Vaudry D, Gonzalez B, Basille GM, Yon L, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 2000;52:269–324.PubMedGoogle Scholar
  78. Wagner U, Bredenbroker D, Storm B, Tackenberg B, Fehmann HC, Von Wichert P. Effects of VIP and related peptides on airways mucus secretion from isolated rat trachea. Peptides 1998;19:241–245.PubMedCrossRefGoogle Scholar
  79. Wey Y, Mojsov S. Tissue specific expression of different human receptor types for pituitary adenylate cyclase-activating plypeptide and vasoactive intestinal polypeptide: implications for their role in human phisiology. J Neuroendocrinol 1996a;8:811–817.CrossRefGoogle Scholar
  80. Wey Y, Mojsov S. Distribution of GLP-1 and PACAP receptors in human tissues. Acta Physiol Scand 1996b;157:355–357.CrossRefGoogle Scholar
  81. Widdicombe JC, Karlsson JA, Barnes PJ.“Cholinergic mechanisms in bronchial hyperresponsiveness and asthma”.InAsthma: Its Pathology and Treatment, Kaliner MA, Barnes PJ, Persson CGA, eds. New York: Marcel Dekker Inc. 1991;pp73–101.Google Scholar
  82. Yoshida M, Aizawa H, Takahashi N, Shigyo M, Hara N. Pituitary adenylate cyclaseactivating peptide mediates inhibitory nonadrenergic noncholinergic relaxation. Eur J Pharmacol 2000;395:77–83.PubMedCrossRefGoogle Scholar
  83. Yoshihara S, Linden A, Kashimoto K, Nagano Y, Ichimura T, Nadel JA. A novel PACAP I - 27 analogue causes sustained smooth muscle relaxation in guinea-pig trachea. Ann N Y Acad Sci 1996;805:536–542.PubMedCrossRefGoogle Scholar
  84. Yoshihara S, Linden A, Kashimoto K, Nagano Y, Ichinura T, Nadel JA. Long lasting smooth muscle relaxation by a novel PACAP analogue in guinea-pig and primate airways in vitro. Br J Pharmacol 1997;121:1730–1734.PubMedCrossRefGoogle Scholar
  85. Zhang ZH, Jow F, Numann R, Hinson J. The airway-epithelium: a novel site of action by guanylin. Biochem Biophys Res Commun 1998;244:50–56.PubMedCrossRefGoogle Scholar
  86. Zia F, Fagarasan M, Bitar K, Coy DH, Pisegna JR, Wank SA, Moody TW. Pituitary adenylate cyclase activating peptide receptors regulate the growth of non-small cell lung cancer cells. Cancer Res 1995;55:4886–4991.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • J. C. Prieto
    • 1
  1. 1.University of AlcaláCampus UniversitarioAlcalá de HenaresSpain

Personalised recommendations