Skip to main content

PACAP: An ‘Emergency Response’ Co-Transmitter in the Adrenal Medulla

  • Chapter

Part of the book series: Endocrine Updates ((ENDO,volume 20))

Abstract

PACAP was named based on its presumed function as a hypothalamohypophysial releasing hormone, in turn based on its original characterization in a biochemical-cellular screen for just such a factor. In the late 1980s, Arimura and colleagues decided on an innovative and systematic approach to finding the few remaining factors needed to complete the complement of molecules released from the hypothalamus into the portal circulation of the pituitary and controlling the secretion of ACTH, LH, FSH, prolactin, growth hormone, and thyroid hormone from the anterior pituitary. Evidence existed for as-yet uncharacterized FSH and PRL releasing hormones, and for factors regulating the non-endocrine folliculostellate cells of the anterior pituitary. Since CRF, LH-RH, GH-RH, and TRH all act by increasing cyclic AMP generation in corticotrophs, gonadotrophs, somatotrophs and thyrotrophs, respectively, it stood to reason that the elusive FSH-RH and PRL-RH, if they existed, should also elevate cyclic AMP in gonadotrophs and lactotrophs. Accordingly the Arimura group screened hypothalamic extracts for a new peptide that could do this. PACAP38 was identified based on its ability to elevate cyclic AMP levels and release pituitary hormones in superfused pituitaries, and PACAP27 and PACAP38 were found to be abundantly expressed in hypothalamus and extrahypothalamic locations shortly thereafter (Arimura, 1998). The name stuck, yet PACAP does not appear to be the still-at-large FSH-RH or PRL-RH. In fact, its actions at the pituitary (see accompanying review by Arimura) have still not been comfortably placed in a physiological context. In the meanwhile, the discovery of PACAP stimulated much additional work on the extrapituitary distribution and potential physiological role of this peptide, summarized in authoritative reviews (Arimura, 1998; Vaudry et al, 2000). One area of recent advance not emphasized in that review is the role of PACAP in the adrenal medulla, where the function of PACAP in the splanchnic nerve represents one of the best-studied exemplars of classical neurotransmitter/neuropeptide co-transmission in the entire nervous system. This chapter attempts to rectify this gap in the review literature, and ends by chronicling recent developments culminating in the firm establishment of PACAP as a co-transmitter, with acetycholine, in the adrenal medulla. PACAP’s role as an adrenomedullary co-transmitter may well be prototypical for an important general role for neuropeptides in synaptic transmission: that of providing a ‘stress response’ or ‘emergency response’ capability to a synapse that functions adequately in the short-term using a classical neurotransmitter, but requires a peptide co-transmitter for sustained secretory activity under paraphysiological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Arimura A. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jap J Physiol 1998;48:301–331.

    Article  CAS  Google Scholar 

  • Babinski K, Bodart V, Roy M, De Lean A, Ong H. Pituitary adenylate-cyclase activating polypeptide (PACAP) evokes long-lasting secretion and de novo biosynthesis of bovine adrenal medullary neuropeptides. Neuropeptides 1996;30:572–582.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet MM, Braas KM, May V. Pituitary adenylate cyclase activating polypeptide (PACAP) expression in sympathetic preganglionic projection neurons to the superior cervical ganglion. J Neurobiol 1998;36:325–336.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet MM, Parsons RL, Braas KM, May V. Mechanisms mediating pituitary adenylate cyclaseactivating polypeptide depolarization of rat sympathetic neurons. J Neurosci 2000;20:7353–7361.

    PubMed  CAS  Google Scholar 

  • Bodnar M, Sarrieau A, Deschepper CF, Walker CD. Adrenal vasoactive intestinal peptide participates in neonatal corticosteroid production in the rat. Am J Physiol 1997;273.

    Google Scholar 

  • Bornstein SR, Haidan A, Ehrhart-Bornstein M. Cellular communication in the neuroadrenocortical axis: Role of vasoactive intestinal polypeptide (VIP). Endocrine Res 1996;22:819–829.

    CAS  Google Scholar 

  • Chatterjee TK, Sharma RV, Fisher RA. Molecular cloning of a novel variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor that stimulates calcium influx by activation of L-type calcium channels. J Biol Chem 1996;271:32226–32232.

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU. Pituitary adenylyl cyclase-activating peptide: A pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci USA 1999;96:13468–13473.

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH. “The Biochemical Basis of Neuropharmacology”. In New York: Oxford University Press 1996.

    Google Scholar 

  • Douglas WW. Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br J Pharmacol 1968;34:451–474.

    Article  PubMed  CAS  Google Scholar 

  • Dun NJ, Tang H, Dun SL, Huang R, Dun EC, Wakade AR. Pituitary adenylate cyclase activating polypeptide-immunoreactive sensory neurons innervate rat adrenal medulla. Brain Res 1996;716:11–21.

    Article  PubMed  CAS  Google Scholar 

  • Edwards AV, Jones CT. Adrenal cortical and medullary responses to acetylcholine and vasoactive intestinal peptide in conscious calves. J Physiol 1993;468:515–527.

    PubMed  CAS  Google Scholar 

  • Edwards AV, Jones CT. Adrenal responses to the peptide PACAP in conscious functionally hypophysectomized calves. Am J Physiol 1994;266:E870–E876.

    PubMed  CAS  Google Scholar 

  • Eiden LE, Giraud P, Dave J, Hotchkiss JA, Affolter H-U. Nicotinic receptor stimulation activates both enkephalin release and biosynthesis in adrenal chromaffin cells. Nature 1984;312:661–663.

    Article  PubMed  CAS  Google Scholar 

  • Eiden LE, Anouar Y, Hsu C-M, MacArthur L, Hahm SH. Transcription regulation coupled to calcium and protein kinase signaling systems through TRE- and CRE-like sequences in neuropeptide genes. Adv Pharmacol 1998;42:264–269.

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Colbrie R, Iacangelo A, Eiden LE. Neural and humoral factors separately regulate neuropeptide Y, enkephalin, and chromogranin A and B mRNA levels in rat adrenal medulla. Proc Natl Acad Sci USA 1988;85:3240–3244.

    Article  PubMed  CAS  Google Scholar 

  • FrOdin M, Hannibal J, Wulff BS, Gammeltoft S, Fahrenkrug J. Neuronal localization of pituitary adenylate cyclase-activating polypeptide 38 in the adrenal medulla and growth-inhibitory effect on chromaffin cells. Neuroscience 1995;65:599–608.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima Y, Hikichi H, Mizukami K, Nagayama T, Yoshida M, Suzuki-Kusaba M, Hisa H, Kimura T, Satoh S. Role of endogenous PACAP in catecholamine secretion from the rat adrenal gland. Am J Physiol Regul Integrative Comp Physiol 2001;281:R1562–R1567.

    CAS  Google Scholar 

  • Geng G, Gaspo R, Trabelsi F, Yamaguchi N. Role of L-type Ca2+ channel in PACAP-induced adrenal catecholamine release in vivo. Regul Integr Comp Physiol 1997;42:R1339–R1345.

    Google Scholar 

  • Hahm SH, Hsu C-M, Eiden LE. PACAP activates calcium influx-dependent and -independent pathways to couple met-enkephalin secretion and biosynthesis in chromaffin cells. J Mol Neurosci 1998;11:1–15.

    Article  Google Scholar 

  • Hamelink C, Tjurmina 0, Damadzic R, Young WS, Weihe E, Lee H-W, Eiden LE. Pituitary adenylate cyclase activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci USA 2002;99:461–466.

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JP, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclaseactivating polypeptide. Pharmacol Rev 1998;50:265–270.

    PubMed  CAS  Google Scholar 

  • Haycock JW, Wakade AR. Activation and multiple-site phosphorylation of tyrosine hydroxylase in perfused rat adrenal glands. J Neurochem 1992;58:57–64.

    Article  PubMed  CAS  Google Scholar 

  • HaycockJW.Multiple signaling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40. Neurochem Res 1993;18:15–26.

    Article  PubMed  CAS  Google Scholar 

  • Haycock JW. Short-and long-term regulation of tyrosine hydroxylase in chromaffin cells by VIP and PACAP. Ann N Y Acad Sci 1996;805:219–230.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Lundberg JM, Schultzberg M, Fahrenkrug J. Immunohistochemical evidence for a local VIP-ergic neuron system in the adrenal gland of the rat. Acta Physiol Scand 1981;113:575–576.

    Article  PubMed  CAS  Google Scholar 

  • Holgert H, Holmberg K, Hannibal J, Fahrenkrug J, Brimijoin S, Hartman BK, Hata T. PACAP in the adrenal gland--relationship with choline acetyltransferase, enkephalin and chromaffin cells and effects of immunological sympathectomy. NeuroReport 1996;20:297–301.

    Article  Google Scholar 

  • Holgert H, Dagerlind A, Hokfelt T. Immunohistochemical characterization of the peptidergic innervation of the rat adrenal gland. Horm Metab Res 1998;30:315–322.

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth MA. The distribution of vasoactive intestinal peptide in the rat adrenal cortex and medulla. J Autonom Nery Sys 1984;11:269–283.

    Article  CAS  Google Scholar 

  • Inoue M, Fijishiro N, Ogawa K, Muroi M, Sakamoto Y, Imanaga I, Shioda S. Pituitary adenylate cyclase-activating polypeptide may function as a neuromodulator in guinea-pig adrenal medulla. J Physiol 2000;528.3:473–487.

    Article  PubMed  CAS  Google Scholar 

  • Ip NY, Perlman RL, Zigmond RE. Acute transsynaptic regulation of tyrosine 3-monooxygenase activity in the rat superior cervical ganglion: Evidence for both cholinergic and noncholinergic mechanisms. Proc Natl Acad Sci USA 1983;80:2081–2085.

    Article  PubMed  CAS  Google Scholar 

  • Kanamatsu T, Unsworth CD, Jr. EJD, Viveros OH, Hong JS. Reflex splanchnic nerve stimulation increases levels of proenkephalin A mRNA and proenkephalin A-related peptides in the rat adrenal medulla. Proc Natl Acad Sci USA 1986;83:9245–9249.

    Article  PubMed  CAS  Google Scholar 

  • Kopp MDA, Schomerus C, Dehghhani F, Korf H-W, Meissl H. Pituitary adenylate cyclaseactivating polypeptide and melatonin in the suprachiasmatic nucleus: Effects on the calcium signal transduction cascade. J Neurosci 1999;19:206–219.

    PubMed  CAS  Google Scholar 

  • Kumakura K, Guidotti A, Costa E. Primary cultures of chromaffin cells: molecular mechanisms for the induction of tyrosine hydroxylase mediated by 8-Br-cyclic AMP. Mol Pharmacol 1979;16:865–876.

    PubMed  CAS  Google Scholar 

  • Kvetnansky R, Pacak K, Sabban EL, Kopin IJ, Goldstein DS. Stressor specificity of peripheral catecholaminergic activation. Adv Pharmacol 1998;42:556–560.

    Article  PubMed  CAS  Google Scholar 

  • Lamouche S, Martineau D, Yamaguchi N. Modulation of adrenal catecholamine release by PACAP in vivo. Regul Integr Comp Physiol 1999;45:R162–R170.

    Google Scholar 

  • Lee H-W, Hahm SH, Hsu C-M, Eiden LE. Pituitary adenylate cyclase-activating polypeptide regulation of vasoactive intestinal polypeptide transcription requires Ca2+ influx and activation of the serine/threionine phosphatase calcineurin. J Neurochem 1999;73:1769–1772.

    Article  PubMed  CAS  Google Scholar 

  • Malhotra RK, Wakade TD, Wakade AR. Comparison of secretion of catecholamines from the rat adrenal medulla during continuous exposure to nicotine, muscarine or excess K. Neuroscience 1988;26:313–320.

    Article  PubMed  CAS  Google Scholar 

  • Malhotra RK, Blank M, Wakade TD, Wakade AR. Vasoactive intestinal polypeptide (VIP) serves as another neurotransmitter in the rat adrenal medulla. Regul Peptides 1989a;26:168–168.

    Article  Google Scholar 

  • Malhotra RK, Wakade TD, Wakade AR. Cross-communication between acetylcholine and VIP in controlling catecholamine secretion by affecting cAMP, inositol triphosphate, protein kinase C, and calcium in rat adrenal medulla. J Neurosci 1989b;9:4150–4157.

    CAS  Google Scholar 

  • Marley PD, cheung CY, Thomson KA, Murphy R. Activation of tyrosine hydroxylase by pituitary adenylate cyclase-activating polypeptide (PACAP-27) in bovine adrenal chromaffin cells. J Autonom Nery Syst 1996;60:141–146.

    Article  CAS  Google Scholar 

  • Moller K, Sundler F. Expression of pituitary adenylate cyclase-activating peptide (PACAP) and PACAP type I receptors in the rat adrenal medulla. Regul Peptides 1996;63:129–139.

    Article  CAS  Google Scholar 

  • Morales MA, Holmberg K, Xu ZQ, Cozzari C, Hartman BK, Emson P, Goldstein M, Elfvin L-G, Hokfelt T. Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Proc Natl Acad Sci USA 1995;92:11819–11823.

    Article  PubMed  CAS  Google Scholar 

  • Muroi M, Funahashi H, Zhou CJ, Ohtaki H, Arimura A, Shioda S. PACAP receptor expression in the rat adrenal medulla by in situ hybridization and immunocytochemistry. Ann N Y Acad Sci 2000;921:349–351.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen HS, Hannibal H, Fahrenkrug J. Developmental expression of the pituitary adenylate cyclase activating polypeptide (PACAP) in rat autonomic ganglia and spinal cord. Regul. Peptides 1997;71:125.

    Google Scholar 

  • Nielsen HS, Hannibal J, Fahrenkrug J. Embryonic expression of pituitary adenylate cyclaseactivating polypeptide in sensory and autonomic ganglia and in spinal cord of the rat. J Comp Neurol 1998a;394:403–415.

    Article  CAS  Google Scholar 

  • Nielsen HS, Hannibal J, Fahrenkrug J. Expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the postnatal and adult rat cerebellar cortex. NeuroReport 1998b;9:2639–2642.

    Article  CAS  Google Scholar 

  • Nogi H, Hashimoto H, Fujita T, Hagihara N, matsuuda T, Baba A. Pituitary adenylate cyclaseactivating polypeptide (PACAP) receptor mRNA in the rat adrenal gland: Localization by in situ hybridization and identificatiion of splice variants. Jpn J Pharmacol 1997;75:203–207.

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell M, Marley PD. Multiple calcium channels are required for pituitary adenylate cyclaseactivating polypeptide-induced catecholamine secretion from bovine cultured adrenal chromaffin cells. Naunyn Schmiedebergs Arch Pharmacol 1997;356:536–542.

    Article  PubMed  Google Scholar 

  • Osipenko ON, Barrie AP, Allen JM, Gurney AM. Pituitary adenylyl cyclase-activating peptide activates multiple intracellular signaling pathways to regulate ion channels in PC12 cells. J Biol Chem 2000;275:16626–16631.

    Article  PubMed  CAS  Google Scholar 

  • Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, Zuschratter W, Grone HJ, Kellendonk C, Tronche F, Maldonado R, Lipp H-P, Konnerth A, Schatz G. Impairment of mossy fiber longterm potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J Neurosci 2001;21:5520–5527.

    PubMed  CAS  Google Scholar 

  • Przywara DA, Xi G, Angelilli L, Wakade TD, Wakade AR. A noncholinergic transmitter, pituitary adenylate cyclase activating polypeptide, utilizes a novel mechanism to evoke catecholamine secretion in rat adrenal chromaffin cells. J Biol Chem 1996;271:10545–10550.

    Article  PubMed  CAS  Google Scholar 

  • ReglOcli D, Somogyvari-Vigh A, Vigh S, Kozicz T, Arimura A. Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 2000;31:1411–1417.

    Article  Google Scholar 

  • Renden R, Berwin B, Davis W, Ann H, Chin C-T, Kreber R, Ganetzky B, Martin TFJ, Broadie K. Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion. Neuron 2001;31:421–437.

    Article  PubMed  CAS  Google Scholar 

  • Sabban EL, Hiremagalur B, Nankova B, Kvetnansky R. Molecular biology of stress-elicited induction of catecholamine biosynthetic enzymes. Ann N Y Acad Sci 1995;771:327–338.

    Article  PubMed  CAS  Google Scholar 

  • Sauvage M, Brabet P, Holsboer F, Bockaert J, Steckler T. Mild deficits in mice lacking pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) performing on memory tasks. Mol Brain Res 2000;84:79–89.

    Article  PubMed  CAS  Google Scholar 

  • Schadlow VC, Barzilai N, Deutsch PJ. Regulation of gene expression in PC12 cells via an activator of dual second messengers: Pituitary adenylate cyclase activating polypeptide. Mol Biol Cell 1992;3:941–951.

    PubMed  CAS  Google Scholar 

  • Schafer MK-H, Schatz B, Weihe E, Eiden LE. Target-independent cholinergic differentiation in the rat sympathetic nervous system. Proc Natl Acad Sci USA 1997;94:4149–4154.

    Article  PubMed  CAS  Google Scholar 

  • Shivers BD, Garcs TJ, Gottschall PE, Arimura A. Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology 1991;128:3055–3065.

    Article  PubMed  CAS  Google Scholar 

  • Spengler D, Bweber C, Pantaloni C, Hlsboer F, Bockaert J, Seeburg PH, Journot L. Differential signal transduction by five splice variants of the PACAP receptor. Nature 1993;365:170–175.

    Article  PubMed  CAS  Google Scholar 

  • Sundler F, Ekblad E, Hannibal J, Moller K, Zhang Y-Z, Mulder H, Elsas T, Grunditz T, Danielsen N, Fahrenkrug J, Uddman R. Pituitary adenylate cyclase-activating peptide in sensory and autonomic ganglia: localization and regulation. Ann N Y Acad Sci 1996;805:410–428.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Shibuya I, Nagamoto T, Yamasha H, Kanno T. Pituitary adenylate cyclase-activating polypeptide causes rapid Ca2+ release from intracellular stores and long lasting Ca2+ influx mediated by Na+ influx-dependent membrane depolarization in bovine adrenal chromaffin cells. Endocrinol 1996;137:956–966.

    Article  CAS  Google Scholar 

  • Tanaka K, Shibuya I, Uezono Y, Ueta Y, Toyohira Y, Yanagihara N, Izumi F, Kanno T, Yamashita H. Pituitary adenylate cyclase-activating polypeptide causes Ca2+ release from ryanodine/caffeine stores through a novel pathway independent of both inositol trisphosphates and cyclic AMP in bovine adrenal medullary cells. J Neurochem 1998;70:1652–1661.

    Article  PubMed  CAS  Google Scholar 

  • Tank AW, Osterhout CA, Sterling CR. Regulation of tyrosine hydroxylase activity by muscarinic agonists in rat adrenal medulla. J Pharmacol Exp Ther 1998;286:848–854.

    PubMed  CAS  Google Scholar 

  • Taupenot L, Mahata SK, Wu H, O’Connor DT. Peptidergic activation of transcription and secretion in chromaffin cells. Cis and trans signaling determinants of pituitary adenylyl cyclaseactivating polypeptide (PACAP). J Clin Invest 1998;101:863–876.

    Article  PubMed  CAS  Google Scholar 

  • Taupenot L, Mahata M, Mahata SK, O’Connor DT. Time-dependent effects of the neuropeptide PACAP on catecholamine secretion. Stimulation and desensitization. Hypertension 1999;34:1152–1162.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H, Mueller RA, Axelrod J. Trans-synaptic induction of adrenal tyrosine hydroxylase. J Pharm Exp Ther 1969;169:249–254.

    CAS  Google Scholar 

  • Tomlinson A, Durbin J, Coupland RE. A quantitative analysis of rat adrenal chromaffin tissue: morphometric analysis at tissue and cellular level correlated with catecholamine content. Neuroscience 1987;20:895–904.

    Article  PubMed  CAS  Google Scholar 

  • TOnshoff C, Hemmick L, Evinger MJ. Pituitary adenylate cyclase activating polypeptide (PACAP) regulates expression of catecholamine biosynthetic enzyme genes in bovine adrenal chromaffin cells. J Mol Neurosci 1997;9:127–140.

    Article  PubMed  CAS  Google Scholar 

  • Turquier V, Yon L, Grumolato L, Alexandre D, Fournier A, Vaudry H, Anouar Y. Pituitary adenylate cyclase-activating polypeptide stimulates secretoneurin release and secretogranin II gene transcription in bovine adrenochromaffin cells through multiple signaling pathways and increased binding of pre-existing activator protein- 1 -like transcription factors. Mol Pharmacol 2001;60:42–52.

    PubMed  CAS  Google Scholar 

  • Udelsman R, Harwood JP, Milian MA, Chrousos GP, Goldstein DS, Zimlichman R, Catt KJ, Aguilera G. Functional corticotropin releasing factor receptors in the primate peripheral sympathetic nervous system. Nature 1986;319:147–150.

    Article  PubMed  CAS  Google Scholar 

  • Unsworth CD, Viveros OH. “Stimulus-secretion coupling” In Neuropeptides of the adrenal medulla, K. Rosenheck, eds. New York: CRC Press 1985;pp1–60.

    Google Scholar 

  • Usdin TB, Bonner TI, Mezey E. Two receptors for vasoactive intesetinal polypeptide with similar specificity and complementary distributions. Endocrinology 1994;135:2662–2680.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A and Vaudry H. Pituitary adenylate cyclaseactivating polypeptide and its receptors: from structure to function. Pharmacol Rev 2000;52:269–324.

    PubMed  CAS  Google Scholar 

  • Wakade AR. Non-cholinergic transmitter(s) maintains secretion of catecholamines from rat adrenal medulla for several hours of continuous stimulation of splanchnic neurons. J Neurochem 1988;50:1302–1308.

    Article  PubMed  CAS  Google Scholar 

  • Wakade AR, Wakade TD, Malhotra RK. Restoration of catecholamine content of previously depleted adrenal medulla in vitro: Importance of synthesis in maintaining the catecholamine stores. J Neurochem 1988;51:820–829.

    Article  PubMed  CAS  Google Scholar 

  • Wakade AR, Guo X, Strong R, Arimura A, Haycock J. Pituitary adenylate cyclase-activating polypeptide (PACAP) as a neurotransmitter in rat adrenal medulla. Regul Peptides 1992;37:331.

    Article  Google Scholar 

  • Wakade AR. Multiple transmitter control of catecholamine secretion in rat adrenal medulla. Adv Pharmacol 1998;42:595–598.

    Article  PubMed  CAS  Google Scholar 

  • Wakade TD, Blank MA, Malhotra RK, Pourcho R, Wakade AR. The peptide VIP is a neurotransmitter in rat adrenal medulla: Physiological role in controlling catecholamine secretion. J Physiol 1991;444:349–362.

    PubMed  CAS  Google Scholar 

  • Watanabe T, Ohtaki T, Kitada C, Tsuda M, Fujino M. Adrenal pheochromocytoma PC12H cells respond to pituitary adenylate cyclase activating polypeptide. Biochem Biophys Res Commun 1990;173:252–258.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Masuo Y, Matsumoto H, Suzuki N, Ohtaki T, Masuda Y, Kitada C, Tsuda M, Fujino M. Pituitary adenylate cyclase activating polypeptide provokes cultured rat chromaffin cells to secrete adrenaline. Biochem Biophys Res Commun 1992;182:403–411.

    Article  PubMed  CAS  Google Scholar 

  • Wilson SP. Vasoactive intestinal peptide and substance P increase levels of enkephalin-containing peptides in adrenal chromaffin cells. Life Sci 1987;40:623–628.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamelink, C., Weihe, E., Eiden, L.E. (2003). PACAP: An ‘Emergency Response’ Co-Transmitter in the Adrenal Medulla. In: Vaudry, H., Arimura, A. (eds) Pituitary Adenylate Cyclase-Activating Polypeptide. Endocrine Updates, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0243-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0243-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4983-9

  • Online ISBN: 978-1-4615-0243-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics