Skip to main content

Part of the book series: Endocrine Updates ((ENDO,volume 20))

Abstract

By the mid 1980s, all the classical hypothalamic hypophysiotrophic hormones had been isolated and identified. These included thyrotropin-releasing hormone (TRH), luteinizing hormone-releasing hormone (LHRH), growth hormone-releasing hormone (GHRH), corticotropin-releasing hormone (CRH), somatostatin, and dopamine which inhibits prolactin release. However, the presence of other hypophysiotrophic hormones that specifically stimulate the release of follicle-stimulating hormone (FSH) or prolactin, as well as a hormone that regulates the function of non-glandular pituitary cells such as the folliculostellate (FS) cells could not be ruled out. On the other hand, the classical releasing hormones, TRH, LHRH, GHRH and CRH had been demonstrated to stimulate adenylate cyclase in cultured pituitary cells (Culler et al, 1984; Labrie et al, 1979; 1982) whether or not this activity was directly linked with the release mechanism for the corresponding pituitary hormone. Therefore, we assumed that if there were other releasing hormones in the hypothalamus, they would also stimulate pituitary adenylate cyclase. Based on this assumption, we screened the fractions of the ovine hypothalamic extracts for activation of adenylate cyclase in the rat pituitary cell cultures. The ovine hypothalamic extracts were fractionated by reverse phase-HPLC (RP-HPLC) and then cation ion exchange HPLC (IEX-HPLC). Each fraction was assayed for its ability to activate adenylate cyclase in the rat pituitary cell cultures (Miyata et al, 1989). The retention times of the fractions with cAMP activity from RP-HPLC were plotted on the abscissa, and those from IEX-HPLC were plotted on the ordinate of a map. The retention times in RP-HPLC correspond to the hydrophobicity and those in IEX-HPLC reflect electrical charge. The classical releasing hormones and somatostatin were also subjected to both RP-HPLC and IEX-HPLC, as the reference standards, and each of their retention times was also plotted on the same map. Any spot on the map that was different from those of the classical

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamou JE, Aiyar N, Van Horn S, Elshourbagy NA. Cloning and functional characterization of the human vasoactive intestinal peptide (VIP)-2 receptor. Biochem Biophys Res Comm 1995;209:385–392.

    Article  PubMed  CAS  Google Scholar 

  • Aino H, Hashimoto H, Ogawa N, Nishino A, Yamamoto K, Nogi H, Nagata S, Baba A. Structure of the gene encoding the mouse pituitary adenylate cyclase-activating polypeptide receptor. Gene 1995;164:301–304.

    Article  PubMed  CAS  Google Scholar 

  • Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 1987;49:729–739.

    Article  PubMed  CAS  Google Scholar 

  • Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 1991;129:2787–2789.

    Article  PubMed  CAS  Google Scholar 

  • Arimura A, Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its resceptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol 1995;16:53–88. Arimura A. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol 1998;48:301–331.

    Article  PubMed  CAS  Google Scholar 

  • Barr PJ, Mason OB, Landsberg KE, Wong PA, Kiefer MC, Brake AJ. cDNA and gene structure for a human subtilisin-like protease with cleavage specificity for paired basic amino acid residues. DNA Cell Biol 1991;10:319–328.

    Article  PubMed  CAS  Google Scholar 

  • Bodner M, Fridkin M, Gozes I. Coding sequences for vasoactive intestinal peptide and PHM-27 peptide are located on two adjacent exons in the human genome. Proc Natl Acad Sci USA 1985;82:3548–3551.

    Article  PubMed  CAS  Google Scholar 

  • Bodner M, Castrillo JL, Theill LE, Deerinck T, Ellisman M, Karin M. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell 1988;55:505–518.

    Article  PubMed  CAS  Google Scholar 

  • Bohlen P, Brazeau P, Bloch B, Ling N, Gaillard R, Guillemin R. Human hypothalamic growth hormone releasing factor (GRF): evidence for two forms identical to tumor derived GRF-44- NH2 and GRF-40. Biochem Biophys Res Commun 1983;114:930–936.

    Article  PubMed  CAS  Google Scholar 

  • Bounjoua Y, Vandermeers A, Robberecht P, Vandermeers-Piret MC, Christophe J. Purification and amino acid sequence of vasoactive intestinal peptide, peptide histidine isoleucinamide and secretin from the ovine small intestine. Regul Pept 1991;32:169–179.

    Article  PubMed  CAS  Google Scholar 

  • Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 1981;50:349–383.

    Article  PubMed  CAS  Google Scholar 

  • Bruzzaniti A, Goodge K, Jay P, Taviaux SA, Lam MH, Berta P, Martin TJ, Moseley JM, Gillespie MT. PC8 [corrected], a new member of the convertase family. Biochem J 1996;314:727–731.

    PubMed  CAS  Google Scholar 

  • Cauvin A, Robberecht P, De Neef P, Gourlet P, Vandermeers A, Vandermeers-Piret MC, Christophe J. Properties and distribution of receptors for pituitary adenylate cyclase activating peptide (PACAP) in rat brain and spinal cord. Regul Peptides 1991;35:161–173.

    Article  CAS  Google Scholar 

  • Chatterjee TK, Sharma RV, Fisher RA. Molecular cloning of a novel variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor that stimulates calcium influx by activation of L-type calcium channels. J Biol Chem 1996;271:32226–32232.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee TK, Liu X, Davisson RL, Fisher RA. Genomic organization of the rat pituitary adenylate cyclase-activating polypeptide receptor gene. Alternative splicing within the 5’- untranslated region. J Biol Chem 1997;272:12122–12131.

    Article  PubMed  CAS  Google Scholar 

  • Christophe J. Type I receptors for PACAP (a neuropeptide even more important than VIP?). Biochim Biophys Acta 1993;1154:183–199.

    Article  PubMed  CAS  Google Scholar 

  • Culler MD, Kenjo T, Obara N, Arimura A. Stimulation of pituitary cAMP accumulation by human pancreatic GH-releasing factor (1–44). Am J Physiol 1984;247:E609–E615.

    PubMed  CAS  Google Scholar 

  • Daniel PB, Habener JF. Pituitary adenylate cyclase-activating polypeptide gene expression regulated by a testis-specific promoter in germ cells during spermatogenesis. Endocrinology 2000;141:1218–1227.

    Article  PubMed  CAS  Google Scholar 

  • Daniel PB, Kieffer TJ, Leech CA, Habener JF. Novel alternatively spliced exon in the extracellular ligand-binding domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) selectively increases ligand affinity and alters signal transduction coupling during spermatogenesis. J Biol Chem 2001;276:12938–12944.

    Article  PubMed  CAS  Google Scholar 

  • Dautzenberg FM, Mevenkamp G, Wille S, Hauger RL. N-terminal splice variants of the type I PACAP receptor: isolation, characterization and ligand binding/selectivity determinants. J Neuroendocrinol 1999;11:941–949.

    Article  PubMed  CAS  Google Scholar 

  • Day R, Schafer MK, Watson SJ, Chretien M, Seidah NG. Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol Endocrinol 1992;6:485–497.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch PJ, Hoeffler JP, Jameson JL, Habener JF. Cyclic AMP and phorbol ester-stimulated transcription mediated by similar DNA elements that bind distinct proteins. Proc Natl Acad Sci USA 1988;85:7922–7926.

    Article  PubMed  CAS  Google Scholar 

  • Dong W, Seidel B, Marcinkiewicz M, Chretien M, Seidah NG, Day R. Cellular localization of the prohormone convertases in the hypothalamic paraventricular and supraoptic nuclei: selective regulation of PC1 in corticotrophin-releasing hormone parvocellular neurons mediated by glucocorticoids. J Neurosci 1997;17:563–575.

    PubMed  CAS  Google Scholar 

  • Dynan WS, Tjian R. The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 early promoter. Cell 1983;35:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Eipper BA, Green CB, Campbell TA, Stoffers DA, Keutmann HT, Mains RE, Ouafik L.Alternative splicing and endoproteolytic processing generate tissue-specific forms of pituitary peptidyiglycine alpha-amidating monooxygenase (PAM). J Biol Chem 1992a;267:4008–4015.

    CAS  Google Scholar 

  • Eipper BA, Stoffers DA, Mains RE. The biosynthesis of neuropeptides: peptide alpha-amidation.Annu Rev Neurosci I992b;15:57–85.

    Article  CAS  Google Scholar 

  • Gagnon AW, Aiyar N, Elshourbagy NA. Molecular cloning and functional characterization of a human liver vasoactive intestinal peptide receptor. Cellular Signalling 1994;6:321–333.

    Article  PubMed  CAS  Google Scholar 

  • Golden JA. Holoprosencephaly: a defect in brain patterning. J Neuropathol Exp Neurol 1998;57:991–999.

    Article  PubMed  CAS  Google Scholar 

  • Gotoh E, Yamagami T, Yamamoto H, Okamoto H. Chromosomal assignment of human VIP/PHM-27 gene to 6q26----q27 region by spot blot hybridization and in situ hybridization. Biochem Int 1988;17:555–562.

    PubMed  CAS  Google Scholar 

  • Gottschall PE, Tatsuno I, Miyata A, Arimura A. Characterization and distribution of binding sites for the hypothalamic peptide, pituitary adenylate cyclase activating polypeptide. Endocrinology 1990;127:272–277.

    Article  PubMed  CAS  Google Scholar 

  • Guillemin R, Brazeau P, Bohlen P, Esch F, Ling N, Wehrenberg WB. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 1982;218:585–587.

    Article  PubMed  CAS  Google Scholar 

  • Gurrieri F, Trask BJ, van den Engh G, Krauss CM, Schinzel A, Pettenati MJ, Schindler D, Dietz-Band J, Vergnaud G, Scherer SW, et al, Physical mapping of the holoprosencephaly critical region on chromosome 7q36. Nat Genet 1993;3:247–251.

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA. Nomenclature of receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP). Pharmacol Rev 1998;50:265–270.

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron 1993;11:333–342.

    Article  PubMed  CAS  Google Scholar 

  • Hoeffler JP, Deutsch Pi, Lin J, Habener JF. Distinct adenosine 3’,5’-monophosphate and phorbol ester-responsive signal transduction pathways converge at the level of transcriptional activation by the interactions of DNA-binding proteins.i Mol Endocrinol 1989;3:868–880.

    Article  CAS  Google Scholar 

  • Hosoya M, Kimura C, Ogi K, Ohkubo S, Miyamoto Y, Shimizu M, Onda H, Oshimura M, Arimura A, Fujino M. Structure of the human pituitary adenylate cyclase activating polypeptide (PACAP) gene. Biochem Biophys Acta 1992;1129:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Hosoya M, Onda H, Ogi K, Masuda Y, Miyamoto Y, Ohtaki T, Okazaki H, Arimura A, Fujino M. Molecular cloning and functional expression of rat cDNA encoding the receptor for pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun 1993;194:133–143.

    Article  PubMed  CAS  Google Scholar 

  • Hurley JD, Gardiner JV, Jones PM, Bloom SR. Cloning and molecular characterization of complementary deoxyribonucleic acid corresponding to a novel form of pituitary adenylate cyclase-activating polypeptide messenger ribonucleic acid in the rat testis. Endocrinology 1995;136:550–557.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Yoshida H, Mizuta M, Mizuno N, Fujii Y, Gonoi T, Miyazaki J, Seino S. Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells. Proc Natl Acad Sci USA 1994;91:2679–2683.

    Google Scholar 

  • Ingraham HA, Chen RP, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, Simmons DM, Swanson L, Rosenfeld MG. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 1988;55:519–529.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive instestinal polypeptide. Neuron 1992;8:811–819.

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Obata K, Yanaihara N, Okamoto H. Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 1983;304:547–549.

    Article  PubMed  CAS  Google Scholar 

  • Johnson G, Bachman R. A 46,XY,del(18)(pter-p1100:) cebocephalic child from a 46,XX,t(12;18)(18pter-18p1100:12qter-12pter) normal parent. Hum Genet 1976;34:103–106.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer MC, Tucker JE, Joh R, Landsberg KE, Saltman D, Barr PJ. Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol 1991;10:757–769.

    Article  PubMed  CAS  Google Scholar 

  • Kimura C, Ohkubo S, Ogi K, Hosoya M, Itoh Y, Onda H, Miyata A, Jian L, Dahl RR, Stibbs HH, Arimura A, Fujino M. A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun 1990;166:81–89.

    Article  PubMed  CAS  Google Scholar 

  • Kivipelto L, Absood A, Arimura A, Sundler F, Hakanson R, Panula P. The distribution of pituitary adenylate cyclase activating polypeptide-like immunoreactivity is distinct from heloderminand helospectin-like immunoreactivities in the rat brain. J Chem Neuroanat 1992;5:85–94.

    Article  PubMed  CAS  Google Scholar 

  • Koves K, Arimura A, Somogyvari-Vigh A, Vigh S, Miller J. Immunohistochemical demonstration of a novel hypothalamic peptide, pituitary adenylate cyclase activating polypeptide, in the ovine hypothalamus. Endocrinology 1990;127:264–271.

    Article  PubMed  CAS  Google Scholar 

  • Koves K, Arimura A, Gores TG, Somogyvari-Vigh A. Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 1991;54:159–169.

    Article  PubMed  CAS  Google Scholar 

  • Labrie F, Borgeat P, Drouin J, Beaulieu M, Lagace L, Ferland L, Raymond V. Mechanism of action of hypothalamic hormones in the adenohypophysis. Annu Rev Physiol 1979;41:555–569.

    Article  PubMed  CAS  Google Scholar 

  • Labrie F, Veilleux R, Lefevre G, Coy DH, Sueiras-Diaz J, Schally AV. Corticotropin-releasing factor stimulates accumulation of adenosine 3’,5’-monophosphate in rat pituitary corticotrohs. Science 1982;216:1007–1008.

    Article  PubMed  CAS  Google Scholar 

  • Lam HC, Takahashi K, Ghatei MA, Kanse SM, Polak JM, Bloom SR. Binding sites of a novel neuropeptide pituitary adenylate cyclase activating polypeptide in the rat brain and lung. Eur J Biochem 1990;193:725–729.

    Article  PubMed  CAS  Google Scholar 

  • Lamperti ED, Rosen KM, Villa-Komaroff L. Characterization of the gene and messages for vasoactive intestinal polypeptide (VIP) in rat and mouse. Brain Res Mol Brain Res 1991;9:217–231.

    Article  PubMed  CAS  Google Scholar 

  • Li M, Nakayama K, Shuto Y, Somogyvari-Vigh A, Arimura A. Testis-specific prohormone convertase PC4 processes the precursor of pituitary adenylate cyclase-activating polypeptide (PACAP). Peptides 1998;19:259–268.

    Article  PubMed  CAS  Google Scholar 

  • Li M, Shuto Y, Somogyvari-Vigh A, Arimura A. Prohormone convertases 1 and 2 process ProPACAP and generate matured, bioactive PACAP38 and PACAP27 in transfected rat pituitary GH4C1 cells. Neuroendocrinology 1999;69:217–226.

    Article  PubMed  CAS  Google Scholar 

  • Linder S, Barkhem T, Norberg A, Persson H, Schalling M, Hokfelt T, Magnusson G. Structure and expression of the gene encoding the vasoactive intestinal peptide precursor. Proc Natl Acad Sci USA 1987;84:605–609.

    Article  PubMed  CAS  Google Scholar 

  • Lusson J, Vieau D, Hamelin J, Day R, Chretien M, Seidah NG. cDNA structure of the mouse and rat subtilisin/kexin-like PC5: a candidate proprotein convertase expressed in endocrine and nonendocrine cells. Proc Natl Acad Sci USA 1993;90:6691–6695.

    Article  PubMed  CAS  Google Scholar 

  • Lutz EM, Sheward WJ, West KM, Morrow JA, Fink G, Harmar AJ. The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Letters 1993;334:3–8.

    Article  PubMed  CAS  Google Scholar 

  • Mayo KE, Cerelli GM, Lebo RV, Bruce BD, Rosenfeld MG, Evans RM. Gene encoding human growth hormone-releasing factor precursor: structure, sequence, and chromosomal assignment. Proc Natl Acad Sci USA 1985;82:63–67.

    Article  PubMed  CAS  Google Scholar 

  • Mbikay M, Raffin-Sanson ML, Tadros H, Sirois F, Seidah NG, Chretien M. Structure of the gene for the testis-specific proprotein convertase 4 and of its alternate messenger RNA isoforms. Genomics 1994;20:231–237.

    Article  PubMed  CAS  Google Scholar 

  • Mbikay M, Tadros H, Ishida N, Lerner CP, De Lamirande E, Chen A, El-Alfy M, Clermont Y, Seidah NG, Chretien M, Gagnon C, Simpson EM. Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc Natl Acad Sci USA 1997;94:6842–6846.

    Article  PubMed  CAS  Google Scholar 

  • McFarlin DR, Lehn DA, Moran SM, MacDonald MJ, Epstein ML. Sequence of a cDNA encoding chicken vasoactive intestinal peptide (VIP). Gene 1995;154:211–213.

    Article  PubMed  CAS  Google Scholar 

  • Meerabux J, Yaspo ML, Roebroek AJ, Van de Ven WJ, Lister TA, Young BD. A new member of the proprotein convertase gene family (LPC) is located at a chromosome translocation breakpoint in lymphomas. Cancer Res 1996;56:448–451.

    PubMed  CAS  Google Scholar 

  • Miyamoto Y, Habata Y, Ohtaki T, Masuda Y, Ogi K, Onda H, Fujino M. Cloning and expression of a complementary DNA encoding the bovine receptor for pituitary adenylate cyclaseactivating polypeptide (PACAP). Biochim Biophys Acta 1994;1218:297–307.

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 1989;164:567–574.

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 1990;170:643–648.

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Sano H, Li M, Matsuda Y, Kaiya H, Sato K, Matsuo H, Kangawa K, Arimura A. Genomic organization and chromosomal localization of the mouse pituitary adenylate cyclase activating polypeptide (PACAP) gene. Ann N Y Acad Sci 2000;921:344–348.

    Article  PubMed  CAS  Google Scholar 

  • Morrow JA, Lutz EM, West KM, Fink G, Harmar AJ. Molecular cloning and expression of a cDNA encoding a receptor for pituitary adenylate cyclase activating polypeptide (PACAP). FEBS Letters 1993;329:99–105.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Hosaka M, Torii S, Watanabe T, Murakami K, Nakayama K. Identification and functional expression of a new member of the mammalian Kex2-like processing endoprotease family: its striking structural similarity to PACE4. J Biochem 1993;113:132–135.

    PubMed  CAS  Google Scholar 

  • Nakayama K, Kim WS, Torii S, Hosaka M, Nakagawa T, Ikemizu J, Baba T, Murakami K. Identification of the fourth member of the mammalian endoproteseaiyhomologous to the yeast kex2 protease. J Biol Chem 1992;267:5897–5900.

    PubMed  CAS  Google Scholar 

  • Nishizawa M, Hayakawa Y, Yanaihara N, Okamoto H. Nucleotide sequence divergence and functional constraint in VIP precursor mRNA evolution between human and rat. FEBS Lett 1985;183:55–59.

    Article  PubMed  CAS  Google Scholar 

  • Ogi K, Kimura C, Onda H, Arimura A, Fujino M. Molecular cloning and characterization of cDNA for the precursor of rat pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun 1990;173:1271–1279.

    Article  PubMed  CAS  Google Scholar 

  • Ogi K, Miyamoto Y, Masuda Y, Habata Y, Hosoya M, Ohtaki T, Masuo Y, Onda H, Fujino MMolecular cloning and functional expression of a cDNA encoding a human pituitary adenylate cyclase activating polypeptide receptor. Biochem Biophys Res Commun 1993;196:1511–1521.

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo S, Kimura C, Ogi K, Okazaki K, Hosoya M, Onda H, Kiyata A, Arimura A, Fujino M. Primary structure and characterization of the precursor to human pituitary adenylate cyclase activating polypeptide. DNA Cell Bio 1992;11:21–30.

    Article  CAS  Google Scholar 

  • Ohkubo S, Ogi K, Kimura C, Okazaki K, Onda H, Fujino, M. Expression of the PACAP gene in a human neuroblastoma cell line: cDNA cloning and analyses of the upstream regulatory region. Endocrine J 1994;2:135–145.

    CAS  Google Scholar 

  • Okazaki K, Kimura C, Kosaka T, Watanabe T, Ohkubo S, Ogi K, Kitada C, Onda H, Fujino M. Expression of human pituitary adenylate cyclase activating polypeptide (PACAP) cDNA in CHO cells and characterization of the products. FEBS Letters 1992;298:49–56.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki K, Itoh Y, Ogi K, Ohkubo S, Onda H. Characterization of murine PACAP mRNA. Peptides 1995;16:1295–1299.

    Article  PubMed  CAS  Google Scholar 

  • Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, Bockaert J, Joumot L. Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclaseactivating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP27 and PACAP38 in phospholipase C activation. J Biol Chem 1996;271:22146–22151.

    Article  PubMed  CAS  Google Scholar 

  • Pei L. Genomic structure and embryonic expression of the rat type 1 vasoactive intestinal polypeptide receptor gene. Regul Pept 1997;71:153–161.

    Article  PubMed  CAS  Google Scholar 

  • Pisegna JR, Wank SA Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc Nat Acad Sci USA 1993;90:6345–6349.

    Article  PubMed  CAS  Google Scholar 

  • Pisegna JR, Wank SA Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. J Biol Chem 1996;271:17267–17274.

    Article  PubMed  CAS  Google Scholar 

  • Rivier J, Spiess J, Thorner M, Vale W. Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 1982;300:276–278.

    Article  PubMed  CAS  Google Scholar 

  • Roebroek AJ, Schalken JA, Leunissen JA, Onnekink C, Bloemers HP, Van de Ven WJ. Evolutionary conserved close linkage of the c-fes/fps proto-oncogene and genetic sequences encoding a receptor-like protein. EMBO J 1986;5:2197–2202.

    PubMed  CAS  Google Scholar 

  • Rouille Y, Duguay SJ, Lund K, Furuta M, Gong Q, Lipkind G, Oliva Jr AA, Chan SJ, Steiner DF. Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol 1995;16:322–361.

    Article  PubMed  CAS  Google Scholar 

  • Schafer MK, Day R, Cullinan WE, Chretien M, Seidah NG, Watson SJ. Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. J Neurosci 1993;13:1258–1279.

    PubMed  CAS  Google Scholar 

  • Seidah NG, Gaspar L, Mion P, Marcinkiewicz M, Mbikay M, Chretien M. cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol 1990;9:789.

    Article  PubMed  CAS  Google Scholar 

  • Seidah NG, Day R, Hamelin J, Gaspar A, Collard MW, Chretien M. Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific kex2/subilisin-like proprotein convertase. Mol Endocrinol 1992;6:1559–1570.

    Article  PubMed  CAS  Google Scholar 

  • Seidah NG, Chretien M, Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie 1994;76:197–209.

    Article  PubMed  CAS  Google Scholar 

  • Seidah NG, Hamelin J, Mamarbachi M, Dong W, Tardos H, Mbikay M, Chretien M, Day R. cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc Natl Acad Sci USA 1996;93: 3388–3393.

    Article  PubMed  CAS  Google Scholar 

  • Seidah NG, Day R, Marcinkiewicz M, Chretien M. Precursor convertases: an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann N Y Acad Sci 1998;839:9–24.

    Article  PubMed  CAS  Google Scholar 

  • Seidah NG, Marcinkiewicz M, Benjannet S, Gaspar L, Beaubien G, Mattei MG, Lazure C, Mbikay M, Chretien M. Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol Endocrinol 1991;5:111–122.

    Article  PubMed  CAS  Google Scholar 

  • Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000;21:619–670.

    Article  PubMed  CAS  Google Scholar 

  • Shioda S, Legradi G, Leung WC, Nakajo S, Nakaya K, Arimura A. Localization of pituitary adenylate cyclase-activating polypeptide and its messenger ribonucleic acid in the rat testis by light and electron microscopic immunocytochemistry and in situ hybridization. Endocrinology 1991;135:818–825.

    Article  Google Scholar 

  • Smeekens SP, Steiner DF. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J Biol Chem 1990;265:2997–3000.

    PubMed  CAS  Google Scholar 

  • Smeekens SP, Avruch AS, LaMendola J, Chan SJ, Steiner DF. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc Natl Acad Sci USA 1991;88:340–344.

    Article  PubMed  CAS  Google Scholar 

  • Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg FH, Journot L. Differential signal transduction by five splice variants of the PACAP receptor. Nature 1993;365:170–175.

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan SP, Huang JX, Cheung MC, Goetzl EJ. Structure, expression, and chromosomal localization of the type I human vasoactive intestinal peptide receptor gene. Proc Nat Acad Sci USA 1995;92:2939–2943.

    Article  PubMed  CAS  Google Scholar 

  • Suda K, Smith DM, Ghatei MA, Murphy JK, Bloom SR. Investigation and characterization of receptors for pituitary adenylate cyclase activating polypeptide in human brain by radioligand binding and chemical cross-linking. J Clin Endocr Metabol 1991;72:958–964.

    Article  CAS  Google Scholar 

  • Svoboda M, Tastenoy M, Ciccarelli E, Stievenart M, Christophe J. Cloning of a splice variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptor. Biochem Biophys Res Commun 1993;195:881–888.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda M, M, Van Rampelbergh J, Goossens JF, De Neef P, Waelbroeck M, Robberecht P. Molecular cloning and functional characterization of a human VIP receptor from SUP-Tl lymphoblasts. Biochem Biophys Res Commun 1994;205:1617–1624.

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi A, Koizumi M, Tsuda M. Novel splice variants of PACAP gene in mouse cerebellar granule cells. Neuroreport 2001;12:1181–1186.

    Article  PubMed  CAS  Google Scholar 

  • Torii S, Yamagishi T, Murakami K, Nakayama K. Localization of Kex2-like processing endoproteases, furin and PC4 within muse testis by in situ hybridization. FEBS Letters 1992;316:12–16.

    Article  Google Scholar 

  • Tsukada T, Horovitch SJ, Montminy MR, Mandel G, Goodman RH. Structure of the human vasoactive intestinal polypeptide gene. Dna 1985;4:293–300.

    PubMed  CAS  Google Scholar 

  • Vigh S, Arimura A, Koves K, Somogyvari-Vigh A, Sitton J, Fermin CD. Immunohistochemical localization of the neuropeptide, pituitary adenylate cyclase activaing polypeptide (PACAP), in human and primate hypothalamus. Peptides 1991;12:313–318.

    Article  PubMed  CAS  Google Scholar 

  • Vigh S, Arimura A, Gottschall PE, Kitada C, Somogyvari-Vigh A, Childs GV. Cytochemical characterization of anterior pituitary target cells for the neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP), using biotinylated ligands. Peptides 1993;14:59–65.

    Article  PubMed  CAS  Google Scholar 

  • Waschek JA, Casillas RA, Nguyen TB, DiCicco-Bloom EM, Carpenter EM, Rodriguez WI. Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Proc Natl Acad Sci USA 1998;95:9602–9607.

    Article  PubMed  CAS  Google Scholar 

  • Yada T, Sakurada M, Nakata M, Ihida K, Yaekura K, Shioda S, Kikuchi M. Current status of PACAP as a regulator of insulin secretion in pancreatic islets. Ann N Y Acad Sci 1996;805:329–340; discussion 341–342.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Hashimoto H, Hagihara N, Nishino A, Fujita T, Matsuda T, Baba A. Cloning and characterization of the mouse pituitary adenylate cyclase-activating polypeptide (PACAP) gene. Gene 1998;211:63–69.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Lindberg I. Purification and characterization of the prohormone convertase PC1. J Biol Chem 1993;268:5615–5623.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arimura, A. (2003). PACAP: Discovery, Gene, Receptors. In: Vaudry, H., Arimura, A. (eds) Pituitary Adenylate Cyclase-Activating Polypeptide. Endocrine Updates, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0243-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0243-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4983-9

  • Online ISBN: 978-1-4615-0243-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics