Skip to main content

The Management of Wetlands for Biological Diversity: Four Principles

  • Chapter
Modern Trends in Applied Aquatic Ecology

Abstract

There are vast areas of major kinds of wetlands: swamps, marshes, fens, and bogs (Table 2.1). Because plant and animal species, vegetation, and wetland types are so variable, it may seem difficult to treat all of these together. Far too often, one encounters specialist publications on the plants or animals of a particular bog, fen, marsh, mire, reed swamp or aquatic community; these balkanized treatments detract from the general principles involved in managing wetlands. Furthermore, because so much focus in wetland management is placed on fish and wildlife production this too often takes precedence over other ecological objectives. Large expanses of wetland vegetation are generally ignored or treated in passing as “aquatic plants.” Our objective here is to try to pull together all these disparate vegetation types, species, and physiographic types, and present four general principles necessary for managing them to maintain and enhance biological diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auclair, A. N., Bouchard, A., &Pajaczkowski, J. (1972). Plant composition and species relations on the Huntingdon Marsh, Quebec.Canadian Journal of Botany,51, 1231–1247.

    Article  Google Scholar 

  • Bacon, P. R. (1978).Flora and fauna of the Caribbean. Trinidad: Key Caribbean Publications.

    Google Scholar 

  • Bernatowiscz, S., & Zachwieja, J. (1966). Types of littoral found in the lakes of the Masurian and Suwalki Lakelands.Komitet Ekolgiezny-Polska Akademia Nauk XIV, 519–545.

    Google Scholar 

  • Boston, H. L. (1986). A discussion of the adaptation for carbon acquisition in relation to the growth strategy of aquatic isoetids.Aquatic Botany,26: 259–270.

    Article  CAS  Google Scholar 

  • Brown, J. H. (1995).Macroecology. Chicago: University of Chicago Press.

    Google Scholar 

  • Brown, J. H., & Maurer, B. A. (1987). Evolution of species assemblages: Effects of energetic constraints and species dynamics on the diversification of North American avifauna.American Naturalist,130, 1–17.

    Article  Google Scholar 

  • Brown, J. H., & Maurer, B. A. (1989). Macroecology: The division of food and space among species on continents.Science,243, 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  • Brunton, D. F., & Di Labio, B. M. (1989). Diversity and ecological characteristics of emergent beach flora along the Ottawa River in the Ottawa-Hull region, Quebec and Ontario.Naturaliste Canadien,116: 179–191.

    Google Scholar 

  • Charlton, D. L., & Hilts, S. (1989). Quantitative evaluation of fen ecosystems on the Bruce Peninsula. In: M. J. Bardecki & N. Patterson (Eds.),Ontario wetlands: Inertia or momentum(pp. 339–354). Proceedings of conference, Ryerson Polytechical Institute, Toronto, October 21–22, 1988.

    Google Scholar 

  • Christensen, N. L. (1988). Vegetation of the southeastern coastal plain. In: M. G. Barbour, & W. D. Billings (Eds.),North American terrestrial vegatation(pp. 317–363) Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Connor, E. F. & McCoy, E. D. (1979). The statistics and biology of the species-area relationship.American Naturalist,113,791–833.

    Article  Google Scholar 

  • Czaya, E. (1983).Rivers of the world. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Dansereau, P. (1959). Vascular aquatic plant communities of southern Quebec. A preliminary analysis.Transactions of the Northeast Wildlife Conference,10: 27–54.

    Google Scholar 

  • Day, R. T, Keddy, P. A., McNeill, J. & Carleton, T. (1988). Fertility and disturbance gradients: A summary model for riverine marsh vegetation.Ecology,69: 1044–1054.

    Article  Google Scholar 

  • Duncan, R. P. (1993). Flood disturbance and the coexistence of species in a lowland podocarp forest, south Westland, New Zealand.Journal of Ecology,81: 403–416.

    Article  Google Scholar 

  • Forrest, G. I., & Smith, R. A. H. (1975). The productivity of a range of blanket bog vegetation types in the northern Pennines.Journal of Ecology,63, 173–202.

    Article  Google Scholar 

  • Garcia, L. V, Maranon, T., Moreno, A., & Clemente, L. (1993). Above-ground biomass and species richness in a Mediterranean salt marsh.Journal of Vegetation Science,4, 417–424.

    Article  Google Scholar 

  • Gaudet, C. L., & Keddy, P. A. (1995). Competitive performance and species distribution in shoreline plant communities: A comparative approach.Ecology,76, 280–291.

    Article  Google Scholar 

  • Givnish, T. J. (1988). Ecology and evolution of carnivorous plants. In: W. B. Abrahamson (Ed.),Plant-animal interactions. New York: McGraw-Hill.

    Google Scholar 

  • Gleick, P. H. (2000). The world’s water 2000–2001:The biennial report on freshwater resources. Washington, DC: Island Press.

    Google Scholar 

  • Gorham, E. (1979). Shoot height, weight and standing crop in relation to density of monospecific plant stands.Nature,279, 148–150.

    Article  Google Scholar 

  • Gough, L., Grace, J. B., & Taylor, K. L. (1994). The relationship between species richness and community biomass: the importance of environmental variables.Oikos,70, 271–279.

    Article  Google Scholar 

  • Goulding, M. (1980).The fishes and the forest: Explorations in Amazonian natural history. Berkeley: University of California Press.

    Google Scholar 

  • Grace, J. B., & Pugesek, B. H. (1997). A structural equation model of plant species richness and its application to a coastal wetland.American Naturalist,149, 436–460.

    Article  Google Scholar 

  • Grime, J. P. (1973a). Control of species density in herbaceous vegetation.Journal of Environmental Management,1, 151–167.

    Google Scholar 

  • Grime, J. P. (1973b). Competitive exclusion in herbaceous vegetation.Nature,242, 344–347.

    Article  Google Scholar 

  • Grime, J. P. (1979).Plant strategies and vegetation processes. Chichester, UK: Wiley.

    Google Scholar 

  • Grubb, P. J. (1985). Plant populations and vegetation in relation to habitat disturbance and competition: problems of generalizations. In: J. White, (Ed.),The population structure of vegetation(pp. 595–621). The Hague: Junk.

    Google Scholar 

  • Hill, N. M., Keddy, P. A., & Wisheu, I. C. (1998). A hydrological model for predicting the effects of dams on shoreline vegetation of lakes and reservoirs.Environmental Management,22: 723–736.

    Article  PubMed  Google Scholar 

  • Junk, W J. (1983). Ecology of swamps on the Middle Amazon. In: D. W. Goodall (Ed.),Ecosystems of the world 4B: Mires: Swamp, bog, fen and moor, (pp. 269–294) Amsterdam: Elsevier Science.

    Google Scholar 

  • Junk, W. J. (1986). Aquatic plants of the Amazon system. In: B. R. Davies & K. F. Walker (Eds.),The ecology of river systems, (pp. 319–337) Dordrecht, The Netherlands: Junk.

    Google Scholar 

  • Kadlec, R. R, & Knight, R. L. (1996).Treatment wetlands. New York: Lewis.

    Google Scholar 

  • Keddy, P. A. (1981). Vegetation with coastal plain affinities in Axe Lake, near Georgian Bay, Ontario.Canadian Field Naturalist 95: 241–248.

    Google Scholar 

  • Keddy, P. A. (1983). Shoreline vegetation in Axe Lake, Ontario: Effects of exposure on zonation patterns.Ecology,64:331–344.

    Article  Google Scholar 

  • Keddy, P. A. (1984). Plant zonation on lakeshores in Nova Scotia: a test of the resource specialization hypothesis.Journal of Ecology 72: 797–808.

    Article  Google Scholar 

  • Keddy, P. A. (1990). Competitive hierarchies and centrifugal organization in plant communities. In: J. B. Grace, & D. Tilman (Eds.),Perspectives on plant competition(pp. 265–290). San Diego: Academic Press.

    Google Scholar 

  • Keddy, P A. (1991). Water level fluctuations and wetland conservation. In: J. Kusler, & R. Smardon (Eds.),Wetlands of the Great Lakes: Protection and restoration policies, Status of the science(pp. 79–91). New York: Managers Inc.

    Google Scholar 

  • Keddy, P. A. (2000).Wetland ecology: Principles and conservation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Keddy, P. A. (2001).Competition(2nd ed.). London: Chapman & Hall.

    Book  Google Scholar 

  • Keddy, P. A. & Fraser, L. H. (1999). On the diversity of land plants.EcoScience,6, 366–380.

    Google Scholar 

  • Keddy, P. A., Gaudet, C. & Fraser, L. H. (2000). Effects of low and high nutrients on the competitive hierarchy of 26 shoreline plants.Journal of Ecology,88, 413–423.

    Article  Google Scholar 

  • Keddy, P. A., & Wisheu, I. C. (1989). Ecology, biogeography, and conservation of coastal plain plants: Some general principles from the study of Nova Scotian wetlands.Rhodora,91: 72–94.

    Google Scholar 

  • Keogh, T. M., Keddy, P. A., & Fraser, L. H. (1999). Patterns of tree species richness in forested wetlands.Wetlands,19: 639–647.

    Article  Google Scholar 

  • Klinkhamer, P. G. L., & de Jong, T. J. (1985). Shoot biomass and species richness in relation to some environmental factors in a coastal dune area in The Netherlands.Vegetatio,63, 129–132.

    Article  Google Scholar 

  • Lambert, J. D. H. (1976). Plant succession on an active tundra mud slump, Garry Island, Mackenzie River Delta, Northwest Territories.Canadian Journal of Botany,54, 1750–1758.

    Article  Google Scholar 

  • Lowe-McConnell, R. H. (1975).Fish communities in tropical freshwaters: Their distribution, ecology and evolution. London: Longman.

    Google Scholar 

  • Lowe-McConnell, R. H. (1986). Fish of the Amazon system. In: B. R. Davies & K. F. Walker (Eds.),The ecology of river systems(pp. 339–351). Dordrecht, The Netherlands: Junk.

    Google Scholar 

  • Lubchenko, J. (1978). Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities.American Naturalist,112, 23–39.

    Article  Google Scholar 

  • Marrs, R. H., Grace, J. B., & Gough, L. (1996). On the relationship between plant species diversity and biomass: A comment on a paper by Gough, Grace and Taylor.Oikos,75, 323–326.

    Article  Google Scholar 

  • Moore, D. R. J., & Keddy, P. A. (1989). The relationship between species richness and standing crop in wetlands: the importance of scale.Vegetatio,79: 99–106.

    Article  Google Scholar 

  • Moore, D. R. J., Keddy, P. A., Gaudet, C. L., & Wisheu, I. C. (1989). Conservation of wetlands: Do infertile wetlands deserve a higher priority?Biological Conservation,47: 203–217.

    Article  Google Scholar 

  • Muotka, T. & Virtanen, R. (1995). The stream as a habitat templet for bryophytes: Species’ distributions along gradients in disturbance and substratum heterogeneity.Freshwater Biology,33, 141–160.

    Article  Google Scholar 

  • Nilsson, C., Grelsson, G., Johansson, M., & Sperens, U. (1989). Patterns of plant species richness along riverbanks.Ecology,70, 77–84.

    Article  Google Scholar 

  • Oksanen, J. (1996). Is the humped relation between species richness and biomass an artefact due to plot size?Journal of Ecology,84, 293–295.

    Article  Google Scholar 

  • Painter, S., & Keddy, P. A. (1992). Effects of water level regulation on shoreline marshes: A predictive model applied to the Great Lakes. National Water Research Institute, Environment Canada, Burlington.

    Google Scholar 

  • Palmer, M. W, & White, P. S. (1994). Scale dependence and the species-area relationship.American Naturalist,144, 717–740.

    Article  Google Scholar 

  • Partel, M., Zobel, M., Zobel, K., & Van der Maarel, E. (1996). The species pool and its relation to species richness-evidence from Estonian plant communities.Oikos,75, 111–117.

    Article  Google Scholar 

  • Partridge, T. R., & Wilson, J. B. (1987). Salt tolerance of salt marsh plants of Otago, New Zealand.New Zealand Journal of Botany,25, 559–566.

    Article  Google Scholar 

  • Pearsall, W H. (1920). The aquatic vegetation of the English Lakes.Journal of Ecology,8, 163–201.

    Article  Google Scholar 

  • Pechmann, J. H. K., Scott, D. E., Whitfield, J., & Semlitsch, R. D. (1989). Influence of wetland hydroperiod on diversity and abundance of metamorphosing juvenile amphibians.Wetlands Ecology and Management,1: 3–11.

    Article  Google Scholar 

  • Penfound, W. T, & Hathaway, E. S. (1938). Plant communities in the marshlands of southeastern Louisiana.Ecological Monographs,8: 1–56.

    Article  CAS  Google Scholar 

  • Pielou, E. C. (1977).Mathematical ecology. New York: Wiley.

    Google Scholar 

  • Postel, S. L., Daily, G. C., & Ehrlich, P. R. (1996). Human appropriation of renewable fresh water.Science,271: 785–788.

    Article  CAS  Google Scholar 

  • Puerto, A., Rico, M., Matias, M. D., & Garcia, J. A. (1990). Variation in structure and diversity in Mediterranean grasslands related to trophic status and grazing intensity.Journal of Vegetation Science,1, 445–452.

    Article  Google Scholar 

  • Quinlan, C., & Mulamoottil, G. (1987). The effects of water level fluctuation on three Lake Ontario shoreline marshes.Canadian Water Resources Journal,12, 64–11.

    Article  Google Scholar 

  • Rejmankova, E., Pope, K. O., Pohl, M. D., & Rey-Benayas, J. M. (1995). Freshwater wetland plant communities of northern Belize: implications for paleoecological studies of Maya wetland agriculture.Biotropica,27,28–35.

    Article  Google Scholar 

  • Reznicek, A. A., & Catling, P. M. (1989). Flora of Long Point.Michigan Botanist,28, 99–175.

    Google Scholar 

  • Rosenzweig, M. L., & Abramsky, Z. (1993). How are diversity and productivity related? In: R. E. Ricklefs, & D. Schluter (Eds.),Species diversity in ecological communities(pp. 52–65). Chicago: The University of Chicago Press.

    Google Scholar 

  • Salo, J., Kalliola, R., Hakkinen, I, Makinen, Y., Niemela, P., Puhakka, M., & Coley, P. D. (1986). River dynamics and the diversity of Amazon lowland forest.Nature,322, 254–258.

    Article  Google Scholar 

  • Scharf, F. S., Juanes, F., & Sutherland, M. (1998). Inferring ecological relationships from the edges of scatter diagrams: Comparison of regression techniques.Ecology,79, 448–460.

    Article  Google Scholar 

  • Smith, P. G. R., Glooschenko, V., & Hagen, D. A. (1991). Coastal wetlands of three Canadian Great Lakes: inventory, current conservation initiatives, and patterns of variation.Canadian Journal of Fisheries and Aquatic Sciences,48, 1581–1594.

    Article  Google Scholar 

  • Spence, D. H. N. (1964). The macrophytic vegetation of freshwater lochs, swamps and associated fens. In: J. H. Burnett (ed.),The Vegetation of Scotland(pp. 306–425). Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Strahler, A. N. (1971).The earth sciences(2nd ed.). New York: Harper & Row.

    Google Scholar 

  • Tilman, D. & Pacala, S. (1993). The maintenance of species richness in plant communities. In: R. E. Ricklefs & D. Schluter (Eds.),Species diversity in ecological communities(pp. 13–25). Chicago: University of Chicago Press.

    Google Scholar 

  • Verhoeven, J. T. A., Kemmers, R. H., & Koerselman, W. (1993). Nutrient enrichment of freshwater wetlands. In: C. C. Vos, & P. Opdam (Eds.),Landscape ecology of a stressed environment(pp. 33–59). London: Chapman & Hall.

    Chapter  Google Scholar 

  • Verhoeven, J. T. A., Koerselman, W., & Meuleman, A. F. M. (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: Relations with atmospheric inputs and management regimes.Trends in Ecology and Evolution,11: 493–497.

    Article  Google Scholar 

  • Vermeer, H. J. G. (1986). The effect of nutrients on shoot biomass and species composition of wetland and hayfield communities.Acta Oecologica/Oecologia Plantarum,7, 31–41.

    Google Scholar 

  • Vermeer, J. G., & Verhoeven, J. T. A. (1987). Species composition and biomass production of mesotrophic fens in relation to the nutrient status of the organic soil.Acta Oecologica/Oecologia Plantarum,8, 321–330.

    Google Scholar 

  • Vince, S. W., & Snow, A. A. (1984). Plant zonation in an Alaskan salt marsh.Journal of Ecology,72, 651–667.

    Article  Google Scholar 

  • Vitt, D. H. (1990). Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients.Botanical Journal of the Linnean Society,104, 35–59.

    Article  Google Scholar 

  • Weiher, E., & Keddy, P. A. (1995). The assembly of experimental wetland plant communities.Oikos,73: 323–335.

    Article  Google Scholar 

  • Weiher, E., Wisheu, I. C., Keddy, P. A., & Moore, D. R. J. (1996). Establishment, persistence, and management implications of experimental wetland plant communities.Wetlands,16, 208–218.

    Article  Google Scholar 

  • Weller, M. W. (1994).Freshwater Marshes: Ecology and Wildlife Management. 3rd edn. Minneapolis: University of Minnesota.

    Google Scholar 

  • Wheeler, B. D., & Giller, K. E. (1982). Species richness of herbaceous fen vegetation in Broadland, Morfolk in relation to the quantity of above-ground plant material.Journal of Ecology,70, 179–200.

    Article  Google Scholar 

  • Wheeler, B. D., & Shaw, S. C. (1991). Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales.Journal of Ecology,79, 285–301.

    Article  Google Scholar 

  • White, D. A. 1983. Plant communities of the lower Pearl River basin, Louisiana.American Midland Naturalist,110: 381–396.

    Article  Google Scholar 

  • Willis, A. J. (1963). Braunton Burrows: The effects on the vegetation of the addition of mineral nutrients to the dune soils.Journal of Ecology,51, 353–374.

    Article  Google Scholar 

  • Wilson, S. D., & Keddy, P. A. (1986a). Species competitive ability and position along a natural stress/disturbance gradient.Ecology,67: 1236–1242.

    Article  Google Scholar 

  • Wilson, S. D., & Keddy, P. A. (1986b). Measuring diffuse competition along an environmental gradient: Results from a shoreline plant community.American Naturalist,127, 862–869.

    Article  Google Scholar 

  • Wilson, S. D., & Keddy, P. A. (1988). Species richness, survivorship, and biomass accumulation along an environmental gradient.Oikos,53, 375–380.

    Article  Google Scholar 

  • Wisheu, I. C, & Keddy, P. A. (1989). The conservation and management of a threatened coastal plain plant community in eastern North America (Nova Scotia, Canada).Biological Conservation,48, 229–238.

    Article  Google Scholar 

  • Wisheu, I. C., & Keddy, P. A. (1992). Competition and centrifugal organization of plant communities: Theory and tests.Journal of Vegetation Science,3, 147–156.

    Article  Google Scholar 

  • Wisheu, I. C., & Keddy, P. A. (1996). Three competing models for predicting the size of species pools: A test using eastern North American wetlands.Oikos,76, 253–258.

    Article  Google Scholar 

  • Wisheu, I. C., Keddy, P. A., Moore, D. J., McCanny, S. J., & Gaudet, C. L. (1991). Effects of eutrophication on wetland vegetation. In: J. Kuslor, & R. Smardon (Eds.),Wetlands of the Great Lakes: Protection and restoration policies, Status of the science(pp. 112–121). New York: Managers Inc.

    Google Scholar 

  • Yabe, K. (1993). Wetlands of Hokkaido. In S. Higashi, A. Osawa, & K. Kanagawa (Eds.),Biodiversity and ecology in the northernmost Japan(pp. 38–49). Hokkaido University Press.

    Google Scholar 

  • Yabe, K., & Onimaru, K. (1997). Key variables controlling the vegetation of a cool-temperate mire in northern Japan.Journal of Vegetation Science,8, 29–36.

    Article  Google Scholar 

  • Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions.Journal of Biology Osaka City University,14, 107–129.

    Google Scholar 

  • Zobel, M. (1997). The relative role of species pools in determining plant species richness: An alternative explanation of species coexistence.Trends in Ecology and Evolution,12, 266–269.

    Article  PubMed  CAS  Google Scholar 

  • Zobel, K., & Liira, J. A. (1997). A scale-independent approach to the richness vs biomass relationship in groundlayer plant communities.Oikos,80, 325–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keddy, P.A., Fraser, L.H. (2003). The Management of Wetlands for Biological Diversity: Four Principles. In: Ambasht, R.S., Ambasht, N.K. (eds) Modern Trends in Applied Aquatic Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0221-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0221-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4972-3

  • Online ISBN: 978-1-4615-0221-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics