Abstract

The majority of Spintronic devices involve ferromagnetic metal-nonmagnetic metal (F-N) trilayers or multilayers and use magnetoresistive properties. Most applications of these structures involve sensors, and an example is a read head that senses the magnetization state of magnetic domains associated with analog or digital information recorded in magnetic media. Recent efforts have aimed at using magnetoresistive elements in integrated circuits as nonvolatile memory cells for digital data. These all-metal devices have low impedance, typically draw high currents, and are not readily interfaced with standard silicon integrated circuitry.

Keywords

Microwave Torque Recombination Arsenic Milling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).ADSGoogle Scholar
  3. 3.
    M. Johnson and R. H. Silsbee,Phys. Rev. B 37, 5326 (1988).ADSGoogle Scholar
  4. 4.
    M. Johnson and R. H. Silsbee,J. Appl. Phys. 63, 3934 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    A. G. Aronov, Pis ma Zh. Eksp. Teor. Fiz. 24, 37 (1976) [Sov. Phys. JETP Lett. 24, 32 (1976)].Google Scholar
  6. 6.
    M. Johnson,Phys. Rev. Lett. 67, 3594 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    M. Johnson, Appl. Phys. Lett. 63, 1435 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    M. Johnson and R. H. Silsbee, Phys. Rev. B 35,4959 (1987) [see the appendix for the fully generalized solution].ADSGoogle Scholar
  9. 9.
    R. H. Silsbee, Bull. Magn. Res. 2, 284 (1980) [see also Ref. 1].Google Scholar
  10. 10.
    M. Johnson, Mat. Sci. Eng. B 31, 199 (1995).Google Scholar
  11. 11.
    M. Johnson, J. Appl. Phys.75, 6714 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    R. Soulen et al., Science 282, 5386 (1998).Google Scholar
  13. 13.
    M. Johnson, Phys. Rev. Lett. 70, 2142 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    S. Dubois et al., Phys. Rev. B 60, 477 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    K. Bussmann et al., IEEE Trans. Mag. 34, 924 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 60, 377 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    M. Johnson, Phys. Rev. B 58, 9635 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    M. Johnson, Science 260, 320 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    P. M.Tedrowand R. Meservey,Phys. Rev. B 7, 318(1973)ADSGoogle Scholar
  20. 19.a
    J. S. Moodera,L. R. Kinder,T. M.Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).ADSCrossRefGoogle Scholar
  21. 20.
    A. Y. Elezzabi, M. R. Freeman, and M. Johnson, Phys. Rev. Lett. 11, 3220 (1996).ADSCrossRefGoogle Scholar
  22. 21.
    J. Fabian and S. Das Sarma, Phys. Rev. Lett.81, 5624 (1998).ADSCrossRefGoogle Scholar
  23. 22.
    M. Johnson, Semicond. Sci. Technol. (2002).Google Scholar
  24. 23.
    M. Johnson, Nature (2002).Google Scholar
  25. 24.
    H. Higashino, K. Mizuno, T. Matsushima, K. Setsune, and K. Wasa, Advances in Superconductivity III, Proceedings of the ISS’90, edited by Kajimura and Hayakawa (Springer, New York, 1991), p. 1227.Google Scholar
  26. 25.
    T. Kobayashi, K. Hashimoto, U. Kabasawa, and M. Tonouchi, IEEE Trans. Mag. MAG-25, 927 (1989).ADSCrossRefGoogle Scholar
  27. 26.
    C. W. Schneider, G. J. Gerritsma, and H. Rogalla,Proceedings of the 2nd Workshop on HTS Applications and New Materials, 8–10 May 1995, Enschede, The Netherlands, pp. 91–97.Google Scholar
  28. 27.
    Yu M. Bouguslavskij, K. Joosse, A. G. Sivakov, F. Roesthuis, G. J. Gerritsma, and H. Rogalla, Physica C 220, 195 (1994).ADSCrossRefGoogle Scholar
  29. 28.
    I. Iguchi, K. Nukui, and K. Lee, Phys. Rev. B 50, 457 (1994).ADSCrossRefGoogle Scholar
  30. 29.
    Q. Wang and I. Iguchi,Physica C 228, 393 (1994) [It should be noted that, in prior work (Refs. 1 - 6), gains were obtained without taking into account IShift] .ADSCrossRefGoogle Scholar
  31. 30.
    For example, see J. J. Chiang and D. J. Scalapino, J. Low Temp. Phys.31, 1 (1978).ADSCrossRefGoogle Scholar
  32. 31.
    J. Clarke, Phys. Rev. Lett. 28, 1363 (1972)ADSCrossRefGoogle Scholar
  33. 31.a
    J. Clarke and M. Tinkham, Phys. Rev. Lett. 28, 1366 (1972).ADSCrossRefGoogle Scholar
  34. 32.
    C. S. Owen and D. J. Scalapino, Phys. Rev. Lett. 28, 1550 (1972).ADSCrossRefGoogle Scholar
  35. 33.
    T.-W. Wong, J. T. C. Yeh, and D. Langenberg, Phys. Rev. Lett. 37, 150 (1976).ADSCrossRefGoogle Scholar
  36. 34.
    W. J. Gallagher,IEEE Trans. Magn. MAG-21, 709 (1985)ADSCrossRefGoogle Scholar
  37. 34.a
    R. A. Buhrman, SQUIDs and Their Applications, edited by H. D. Halbohm and H. Lubbig (Walter de Gruyter, Berlin, 1985), p. 171.Google Scholar
  38. 35.
    Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries, edited by K. E. Gray (Plenum, New York, 1981)Google Scholar
  39. 35.a
    K. E. Gray,Appl. Phys. Lett. 32, 392 (1978).ADSCrossRefGoogle Scholar
  40. 36.
    J. Mannhart, Semicond. Sci. Technol.9, 49 (1996).Google Scholar
  41. 37.
    V. A. Vas’ko, V. A. Larkin, P. A. Kraus, K. R. Nikolaev, D. E. Grupp, C. A Nordman, and A. M. Goldman, Phys. Rev. Lett. 78, 1134 (1997).ADSCrossRefGoogle Scholar
  42. 38.
    M. Johnson, J. Magn. Magn. Mater. 156, 321 (1996).ADSCrossRefGoogle Scholar
  43. 39.
    Z. W. Dong et al., Appl. Phys. Lett. 71, 1718 (1997).ADSCrossRefGoogle Scholar
  44. 40.
    Z. W. Dong, T. Boettcher, C.-H. Chen, Z. Trajanovic, I. Takeuchi, V. Talyansky, R. P. Sharma, and T. Venkatesan,Appl. Phys. Lett. 69, 3432 (1996).ADSCrossRefGoogle Scholar
  45. 41.
    M. Johnson, Appl. Phys. Lett. 65, 1460 (1994).ADSCrossRefGoogle Scholar
  46. 42.
    C. D. Chen et al., Phys. Rev. Lett. 88, xx (2002) [Supercond Al Spin Inj].Google Scholar
  47. 43.
    See, e.g., S. T. Ruggiero and D. A. Rudman Eds. Superconducting Devices, (Academic Press, SD, CA, 1990).Google Scholar
  48. 44.
    T. W. Clinton and M. Johnson, Appl. Phys. Lett.70, 1170 (1997).ADSCrossRefGoogle Scholar
  49. 45.
    T. W. Clinton and M. Johnson, J. Appl. Phys. 83, 6777 (1998).ADSCrossRefGoogle Scholar
  50. 46.
    T. W. Clinton and M. Johnson, Appl. Phys. Lett. 76, 2116 (2000).ADSCrossRefGoogle Scholar
  51. 47.
    J. Dolan, J. Low Temp. Phys. 15, 13 (1974).Google Scholar
  52. 48.
    See, e.g., M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1996); [Chapter 6].Google Scholar
  53. 49.
    S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).ADSCrossRefGoogle Scholar
  54. 50.
    T. W. Clinton and M. Johnson, J. Appl. Phys. 85, 1637 (1999).ADSCrossRefGoogle Scholar
  55. 51.
    J. Eom and M. Johnson, Appl. Phys. Lett. 79, 2486 (2001).ADSCrossRefGoogle Scholar
  56. 52.
    V. L. Newhouse (Ed.), Applied Superconductivity, vol. 1 (Academic Press, New York, NY, 1975).Google Scholar
  57. 53.
    T. W. Clinton and M. Johnson, J. Appl. Phys 91, 1371 (2002).ADSCrossRefGoogle Scholar
  58. 54.
    M. Johnson, IEEE Spectrum Magazine 37(2), 33(2000).CrossRefGoogle Scholar
  59. 55.
    M. Johnson, B. R. Bennett, M. J. Yang, M. M. Miller, and B. V. Shanabrook, Appl. Phys. Lett. 71, 974 (1997).ADSCrossRefGoogle Scholar
  60. 56.
    M. Johnson, J. Vac. Sci. Technol. A 16, 1806 (1998).ADSCrossRefGoogle Scholar
  61. 57.
    M. Johnson, B. R. Bennett, P. R. Hammar, and M. M. Miller, Solid State Electron. 44, 1099 (2000).ADSCrossRefGoogle Scholar
  62. 58.
    J. Reijniers and F. M. Peters, Appl. Phys. Lett. 73, 357 (1998).ADSCrossRefGoogle Scholar
  63. 59.
    M. Johnson, IEEE Spectrum Magazine 31(5), 47 (1994).CrossRefGoogle Scholar
  64. 60.
    J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B41, 7685 (1990).ADSCrossRefGoogle Scholar
  65. 61.
    M. I. D’yakanov and V. I. Perel’, Sov. Phys. JETP 33, 1053 (1971).ADSGoogle Scholar
  66. 62.
    D. Stein, K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 51, 130 (1983).ADSCrossRefGoogle Scholar
  67. 63.
    Yu A. Bychkov and E. I. Rashba, J. Phys. C: Solid State Phys. 17, 6039 (1984).ADSCrossRefGoogle Scholar
  68. 64.
    B. Das et al., Phys. Rev. B 39, 1411 (1989).ADSCrossRefGoogle Scholar
  69. 65.
    J. Niita et al., Phys. Rev. Lett. 78, 1136 (1997).Google Scholar
  70. 66.
    J. Luo et al., Phys. Rev. B 38, 10142 (1988).ADSCrossRefGoogle Scholar
  71. 67.
    G. L. Chen et al., Phys. Rev. B 47, 4084 (1993).ADSCrossRefGoogle Scholar
  72. 68.
    P. D. Dresselhaus et al., Phys. Rev. Lett. 68, 106 (1992).ADSCrossRefGoogle Scholar
  73. 69.
    S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).ADSCrossRefGoogle Scholar
  74. 70.
    S. F. Alvarado and P. Renaud, Phys. Rev. Lett. 68, 1387 (1992).ADSCrossRefGoogle Scholar
  75. 71.
    P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Phys. Rev. Lett. 83, 203 (1999).ADSCrossRefGoogle Scholar
  76. 72.
    P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Phys. Rev. Lett. 84, 5024 (2000).ADSCrossRefGoogle Scholar
  77. 73.
    R. H. Silsbee, Phys. Rev. B 63, 155305 (2001).ADSCrossRefGoogle Scholar
  78. 74.
    P. R. Hammar and M. Johnson, Phys. Rev. B 61, 7202 (2000).ADSCrossRefGoogle Scholar
  79. 75.
    P. R. Hammar, B. R. Bennett, M. J. Yang and M. Johnson, J. Appl. Phys. 87, 4665 (2000).ADSCrossRefGoogle Scholar
  80. 76.
    E. I. Rashba, Phys. Rev. B 62, R16,267 (2000).Google Scholar
  81. 77.
    P. R. Hammar and M. Johnson, Appl. Phys. Lett. 79, 2591 (2001).ADSCrossRefGoogle Scholar
  82. 78.
    P. R. Hammar and M. Johnson, Phys. Rev. Lett. 88, 066806 (2002).ADSCrossRefGoogle Scholar
  83. 79.
    W. H. Lau, J. T. Olesberg, and M. E. Flatté, Phys. Rev. B 64, 161301 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Mark Johnson
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations