Sleep pp 61-70 | Cite as

Models of human sleep regulation

  • D. G. M. Beersma

Abstract

One of the reasons to assume that sleep serves important functions to an organism is the fact that timing and duration of sleep are strictly regulated. Specific rebounds occur both upon non-REM sleep deprivation as well as upon REM sleep deprivation, suggesting that the states constitute necessary physiological processes. It is, however, not yet clear what these necessary processes are. The physiological characteristics of non-REM sleep and REM sleep are very different. Apart from the absence or presence of rapid eye movements, there are differences in the electroencephalogram, in thermoregulation, in cardiovascular processes, in breathing. Virtually every physiological process is involved. Each of the processes seems to be crucial for the functioning of the organism, and so each of them may provide the ultimate reason for the rebound responses which occur upon non-REM and REM sleep deprivation.

Keywords

Depression Propen Aspirin Adenosine Retina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ACHERMANN P. - Schlafregulation des Menschen: Modelle und Computersimulationen. Thesis. ADAG Administration & Druck AG, Zürich, 1988.Google Scholar
  2. 2.
    ACHERMANN P., BEERSMA D.G.M., BORBELY A.A. - The two-process model: ultradian dynamics of sleep. In: Horne, JA, (ed) Sleep 90. Pontenagel Press, Bochum, 1990, pp 296–300.Google Scholar
  3. 3.
    ACHERMANN P., BORBELY A.A - Dynamics of EEG slow wave activity during physiological sleep and after administration of benzodiazepine hypnotics. Human Neurobiol. 6, 203–210, 1987.Google Scholar
  4. 4.
    ACHERMANN P., BORBELY A.A. - Simulation of human sleep: ultradian dynamics of electroencephalographic slow-wave activity. J. Biol. Rhythms 5, 141–157, 1990.PubMedCrossRefGoogle Scholar
  5. 5.
    ACHERMANN P., BORBELY A.A. - Combining different models of sleep regulation. J. Sleep Res. 1, 144–147, 1992.PubMedCrossRefGoogle Scholar
  6. 6.
    ACHERMANN P., BORBELY A.A. - Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process. Biol. Cybern. 71, 115–121, 1994.PubMedCrossRefGoogle Scholar
  7. 7.
    ACHERMANN P., DIJK D.J., BRUNNER D.P., BORBELY A.A. - A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull 31, 97–113, 1993.PubMedCrossRefGoogle Scholar
  8. 8.
    ACHERMANN P., WERTH E., DIJK D.J., BORBELY A.A. - Time course of sleep inertia after nighttime and daytime sleep episodes. Arch Ital. Biol. 134, 109–119, 1995.PubMedGoogle Scholar
  9. 9.
    AESCHBACH D., CAJOCHEN C., LANDOLT H., BORBELY A.A. - Homeostatic sleep regulation in habitual short sleepers and long sleepers. Am. J. Physiol. 270, R41–R53, 1996.Google Scholar
  10. 10.
    AKERSTEDT T., FOLKARD S. - Validation of the S and C components of the three-process model of alertness regulation. Sleep 18, 1–6, 1995.PubMedGoogle Scholar
  11. 11.
    AKERSTEDT T., FOLKARD S. - Predicting sleep latency from the three-process model of alertness regulation. Psychophysiol. 33,385–389, 1996.CrossRefGoogle Scholar
  12. 12.
    AKERSTEDT T., FOLKARD S. - The three-process model of alertness and its extension to performance, sleep latency, and sleep length. Chronobiol. Int. 14, 115–123, 1997.PubMedCrossRefGoogle Scholar
  13. 13.
    AMIR S., STEWART J. - Resetting of the circadian clock by a conditioned stimulus. Nature 379, 542–545, 1996PubMedCrossRefGoogle Scholar
  14. 14.
    ANTONIOLI M., SOLANO L., TORRE A., VIOLANI C., COSTA M., BERTINI M. Independence of REM density from other REM sleep parameters before and after REM deprivation. Sleep4, 221–225, 1981.PubMedGoogle Scholar
  15. 15.
    ARGAMASO S.M., FROEHLICH A.C., McCALL M.A., NEVO E., PROVENCIO I., FOSTER R.G. - Photo pigments and circadian systems of vertebrates. Biophys-Chem 56, 3–11, 1995.PubMedCrossRefGoogle Scholar
  16. 16.
    ASCHOFF J., PÖPPEL E, WEVER R. - Circadiane Periodik des Menschen unter dem Einfluss von Licht-Dunkel-Wechseln unterschiedlicher Periode. Pßugers Arch. 306, 58–70, 1969.CrossRefGoogle Scholar
  17. 17.
    ASERINSKI E. - Relationship of rapid eye movement density to the prior accumulation of sleep and wakefulness. Psychophysiology 10, 545–558, 1973.CrossRefGoogle Scholar
  18. 18.
    BEERSMA D.G.M., ACHERMANN P. - Changes of sleep EEG slow-wave activity in response to sleep manipulations: to what extent are they related to changes in REM sleep latency. J. Sleep Res. 4, 23–29, 1995.PubMedCrossRefGoogle Scholar
  19. 19.
    BEERSMA D.G.M., DAAN S. - Strong or weak phase resetting by light pulses in humans. J. Biol. Rhythms 8, 340–347, 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    BEERSMA D.G.M., DAAN S., DIJK D.J. - Sleep intensity and timing: a model for their circadian control. Lectures on Mathematics in the Life Sciences 19, 39–62, 1987.Google Scholar
  21. 21.
    BEERSMA D.G.M., DIJK D.J., BLOK C.G.H., EVERHARDUS I. - REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity. Electroencephalogr. Clin. Neurophysiol. 76, 114–122, 1990.PubMedCrossRefGoogle Scholar
  22. 22.
    BENINGTON J.H., HELLER H.C. - REM-sleep timing is controlled homeostatically by accumulation of REM-sleep propensity in non-REM sleep. Am. J. Physiol. 266, R1992–R2000, 1994.Google Scholar
  23. 23.
    BENINGTON J.H., HELLER H.C. - Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45, 347–360, 1995.PubMedCrossRefGoogle Scholar
  24. 24.
    BOIVIN D.B., DUFFY J.F., KRONAUER R.E., CZEISLER C.A. - Dose-response relationships for resetting of human circadian clock by light. Nature, 379, 540–542, 1996.PubMedCrossRefGoogle Scholar
  25. 25.
    BORBELY A.A. - Sleep: circadian rhythm versus recovery process. In: Koukkou, M, Lehmann, D, Angst, J, (eds), Functional States of the Brain: Their Determinants. Elsevier, Amsterdam, 1980, pp 151–161.Google Scholar
  26. 26.
    BORBELY A.A. - Circadian and sleep dependent processes in sleep regulation. In: Aschoff, J, Daan, S, Groos, G (eds). Vertebrate Circadian Systems: Structure and Physiology. Springer Verlag, Berlin 1982, pp 237–242.CrossRefGoogle Scholar
  27. 27.
    BORBELY A.A. - A two-process model of sleep regulation. Hum. Neurobiol 1, 195–204, 1982.PubMedGoogle Scholar
  28. 28.
    BORBELY A.A. - Sleep homeostasis and models of sleep regulation. In: Kryger, MH, Roth, T, Dement, WC (eds) Principles and Practice of Sleep Medicine, 2nd edition, Saunders, Philadelphia 1994, pp 309–320.Google Scholar
  29. 29.
    BORBELY A.A., ACHERMANN P. - Concepts and models of sleep regulation: an overview. J. Sleep Res. 1, 63–79, 1992.PubMedCrossRefGoogle Scholar
  30. 30.
    BORBELY A.A., BAUMANN P., BRANDEIS D., STRUACH I., LEHMAN D. - Sleep deprivation. Effect on sleep stages and EEG power density in man. Electroencephalogr. Clin. Neurophysiol. 51, 483–495, 1981.PubMedCrossRefGoogle Scholar
  31. 31.
    BORBELY A.A., TOBLER I., WIRZ-JUSTICE A. - Circadian and sleep dependent processes in sleep regulation: outline of a model and implications for depression, Sleep Res 10, 19, 1981.Google Scholar
  32. 32.
    BORBELY A.A., WIRZ-JUSTICE A. - Sleep, sleep deprivation and depression. A hypothesis derived from a model of sleep regulation. Hum. Neurobiol 1, 205–210, 1982.PubMedGoogle Scholar
  33. 33.
    BOS K.H.N., Van den HOOFDAKKER R.H., KAPPERS E.J. - An electrode independent function describing the EEG changes during sleep. In: Sleep 1976, Koella, WP and Levin, P, eds. Basel: Karger, 1977, pp 470–473.Google Scholar
  34. 34.
    BRUNNER D.P., DIJK D.J., BORBELY A.A. - Repeated partial sleep deprivation progressively changes the EEG during sleep and wakefulness. Sleep 16, 100–113, 1993.PubMedGoogle Scholar
  35. 35.
    BRUNNER D.P., DIJK D.J., TOBLER I., BORBELY A.A. - Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis. Electroencephalogr. Clin. Neurophysiol. 75,492–499, 1990.PubMedCrossRefGoogle Scholar
  36. 36.
    CARPENTER G.A., GROSSBERG S. - A neural theory of circadian rhythms: split rhythms, after-effects and motivational interaction. J. Theor. Biol. 113, 163–223, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    DAAN S., ALBRECHT U., Van der HOST G.T.J., ILLNEROVA H., ROENNEBERG T.,WEHR T.A., SCHWARTZ W.J. - Assembling a clock for all seasons: Are there M and E oscillators in the genes? J. Biol. Rhythms16, 105–116,2001.PubMedCrossRefGoogle Scholar
  38. 38.
    DAAN S., BEERSMA D.G.M. - Circadian gating of human sleep and wakefulness. In: Mathematical Modeling of Circadian Systems,MC Moore-Ede and CA Czeisler, eds. New York, Raven 1983, pp 129–158.Google Scholar
  39. 39.
    DAAN S., BEERSMA D.G.M., BORBELY A.A. - Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161–R178, 1984.Google Scholar
  40. 40.
    DIJK D.J., BEERSMA D.G.M. - Effects of SWS deprivation on subsequent EEG power density and spontaneous sleep duration. Electroencephalogr. Clin. Neurophysiol. 72, 312–320, 1989.PubMedCrossRefGoogle Scholar
  41. 41.
    DIJK D.J., BEERSMA D.G.M., DAAN S. - EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J. Biol Rhythms 2, 207–219, 1987.PubMedCrossRefGoogle Scholar
  42. 42.
    DIJK D.J., BEERSMA D.G.M., DAAN S., BLOEM G.M., Van den HOOFDAKKER R.H. - Quantitative analysis of the effects of slow wave sleep deprivation during the first three hours of sleep on subsequent EEG power density. Eur. Arch. Neurol. Sci. 236, 323–328, 1987.CrossRefGoogle Scholar
  43. 43.
    DIJK D.J., BEERSMA D.G.M., DAAN S., LEWY A.L. - Bright morning light advances the human circadian system without affecting non-REM sleep homeostasis. Am. J. Physiol. 256, R106–R111, 1989.PubMedGoogle Scholar
  44. 44.
    DIJK D.J., BEERSMA D.G.M., DAAN S., Van den HOOFDAKKER R.H. - Effects of seganserin, a 5-HT2 antagonist, and temazepam on human sleep stages and EEG power spectra. Eur. J. Pharmacol, 171, 207–218, 1989.PubMedCrossRefGoogle Scholar
  45. 45.
    DIJK D.J., BEERSMA D.G.M., STIEKEMA M. - Is the midafternoon decline in sleep latency associated with a peak in NREM sleep intensity ? Chronobiologia 14, 168–169, 1987.Google Scholar
  46. DIJK D.J., BRUNNER D.P., BEERSMA D.G.M., BORBELY A.A. - Electroencephalogram power density and slow wave sleep as a function of prior waking and circadian phase. Sleep 13,430–440, 1990.PubMedGoogle Scholar
  47. 47.
    DIJK D.J., CZEISLER C.A. - Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci. Lett. 166, 63–68, 1994.PubMedCrossRefGoogle Scholar
  48. 48.
    DIJK D.J., CZEISLER C.A. - Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 15, 3526–3538, 1995.PubMedGoogle Scholar
  49. 49.
    DIJK D.J., DUFFY J.F., CZEISLER C.A. - Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J. Sleep Res. 1, 112–117, 1992.PubMedCrossRefGoogle Scholar
  50. 50.
    DIJK D.J., VISSCHER C.A., BLOEM G.M., BEERSMA D.G.M., DAAN S. - Reduction of human sleep duration after bright light exposure in the morning. Neuroscience Letters 73, 181–186, 1987.PubMedCrossRefGoogle Scholar
  51. 51.
    EDGAR D.M., DEMENT W.C., FULLER C.A. - Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J. Neurosci. 13, 1065–1079, 1993.PubMedGoogle Scholar
  52. 52.
    ENRIGHT J.T. - The Timing of Sleep and Wakefulness. New York: Springer, 1980.CrossRefGoogle Scholar
  53. 53.
    FEINBERG I. - Changes in sleep cycle pattern with age. J. Psychiat. Res. 10, 283–306, 1974.PubMedCrossRefGoogle Scholar
  54. 54.
    GEERING B.A., ACHERMANN P., EGGIMANN F., BORBELY A.A. - Period-amplitude analysis and power spectral analysis: a comparison based on all-night sleep EEG recordings. J. Sleep Res. 2, 121–129, 1993.PubMedCrossRefGoogle Scholar
  55. 55.
    HASTINGS M.H. - Circadian clockwork: two loops are better than one. Nat.Rev.Neurosci. 1, 143–146, 2000.PubMedCrossRefGoogle Scholar
  56. 56.
    HIDDINGS E.A., BEERSMA D.G.M., Van den HOOFDAKKER R.H. - Endogenous and exogenous components in the circadian variation of core body temperature in humans. J. Sleep Res. 6, 156–163, 1997.CrossRefGoogle Scholar
  57. 57.
    HORNE J.A., MOORE V.J. - Sleep EEG effects of exercise with and without additional body cooling. Electroencephalogr. Clin. Neurophysiol. 60, 33–38, 1985.CrossRefGoogle Scholar
  58. 58.
    HORNE J.A., REID A.J. - Night-time sleep EEG changes following body heating in a warm bath. Electroencephalogr. Clin. Neurophysiol. 60, 154–157, 1985.CrossRefGoogle Scholar
  59. 59.
    HORNE J.A., SHACKELL B.S. - Slow-wave sleep elevations after body heating: proximity to sleep and effects of aspirin. Sleep 10, 383–392, 1987.PubMedGoogle Scholar
  60. 60.
    INOUYE S.T., KAWAMURA H. - Persistence of circadian rhythmicity in a mammalian hypothalamic ’island’ containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. U.S.A. 76, 5962–5966, 1979.PubMedCrossRefGoogle Scholar
  61. 61.
    JEWETT M.E., KRONAUER R.E., CZEISLER C.A. - Light-induced suppression of endogenous circadian amplitude in humans. Nature 350, 59–62, 1991.PubMedCrossRefGoogle Scholar
  62. 62.
    KATTLER H., DIJK D.J., BORBELY A.A. - Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J. Sleep Res. 3, 159–164, 1994.PubMedCrossRefGoogle Scholar
  63. 63.
    KOELLA W.P. - A partial theory of sleep. A novel view of its phenomenology and organization. Eur. Neurol.25, suppl 2,9–17, 1986.PubMedCrossRefGoogle Scholar
  64. 64.
    KRONAUER R.E., CZEISLER C.A., PILATO S.F., MOORE-EDE M.C., WEITZMAN E.D. - Mathematical model of the human circadian system with two interacting oscillators. Am. J. Physiol. 242, R3-R17, 1982.PubMedGoogle Scholar
  65. 65.
    LA VIE P. - Ultrashort sleep-waking schedule. III. ’Gates’ and ’forbidden zones’ for sleep. Electroencephalogr. Clin. Neurophysiol. 63, 414–425, 1986.CrossRefGoogle Scholar
  66. 66.
    MASSAQUOI S.G., McCARLEY R.W. - Extension of the limit cycle reciprocal interaction model of REM cycle control. An integrated sleep control model. J. Sleep Res. 1, 138–143, 1992.PubMedCrossRefGoogle Scholar
  67. 67.
    MEDDIS R. - On the function of sleep. Anim. Behav. 23, 676–691, 1975.PubMedCrossRefGoogle Scholar
  68. 68.
    MEERLO P., PRAGT B.J., DAAN S. - Social stress induces high intensity sleep in rats. Neurosci. Lett. 225, 41–44, 1997.PubMedCrossRefGoogle Scholar
  69. 69.
    MERICA H., BLOIS R. - Relationship between the time courses of power in the frequency bands of human sleep EEG. Neurophysiol-Clin. 27, 116–128, 1997.PubMedCrossRefGoogle Scholar
  70. 70.
    MILLER J.D.,MORIN L.P., SCHWARTZ W.J., MOORE R.Y. - New insights into the mammalian circadian clock. Sleep 19, 641–667, 1996.PubMedGoogle Scholar
  71. 71.
    MOORE R.Y., EICHLER V.B. - Loss of circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206, 1972.PubMedCrossRefGoogle Scholar
  72. 72.
    MOURTAZAEV M.S., KEMP B., ZWINDERMAN A.H., KAMPHUISEN H.A.C. - Age and gender affect different characteristics of slow waves in the sleep EEG. Sleep 18, 557–564, 1995.PubMedGoogle Scholar
  73. 73.
    MUKHAMETOV L.M. - Sleep in marine mammals. Exp. Brain Res., Suppl 8, 227–238, 1984.CrossRefGoogle Scholar
  74. 74.
    NAKAO M., McGINTY D., SZYMUSIAK R., YAMAMOTO M. - A thermoregulatory model of sleep control. Jpn. J. Physiol. 45, 291–309, 1995.PubMedCrossRefGoogle Scholar
  75. 75.
    PHILLIPS D.L., RAUTENBERG W., RASHOTTE M.E., STEPHAN F.K. - Evidence for a separate food-entrainable circadian oscillator in the pigeon. Physiol. Behav 53, 1105–1113, 1993.PubMedCrossRefGoogle Scholar
  76. 76.
    PORKKA-HEISKANEN T., STRECKER R.E., THAKKAR M., BJORKUN A.A., GREEN R.W., McCARLEY R.W. - Adenosine: A mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 1265–1268, 1997.PubMedCrossRefGoogle Scholar
  77. 77.
    PUTILOV A.A. - Timing of sleep modelling: Circadian modulation of the homeostatic process. Biol. Rhythm Res. 26, 1–19, 1995.CrossRefGoogle Scholar
  78. 78.
    RALPH M.R., FOSTER R.G., DAVIS F.C., MENAKER M. - Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978, 1990.PubMedCrossRefGoogle Scholar
  79. 79.
    ROENNEBERG T., HASTINGS J.W. - Two photoreceptors control the circadian clock of a unicellular alga. Naturwissenschaften 75, 206–207, 1988.PubMedCrossRefGoogle Scholar
  80. 80.
    SHINOHARA K., HONMA S., KATSUNO Y., ABE H., HONMA K. - Circadian rhythms in the release of vasoactive intestinal polypeptide and arginine-vasopressin in organotypic slice culture of rat suprachiasmatic nucleus. Neurosci. Lett. 170, 183–186, 1994.PubMedCrossRefGoogle Scholar
  81. 8l.
    STEPHAN F.K., ZUCKER I. - Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. U.S.A. 69, 1583–1586, 1972.PubMedCrossRefGoogle Scholar
  82. 82.
    STERIADE M., McCORMICK D.A., SEJNOWSKI T.J. - Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685, 1993.PubMedCrossRefGoogle Scholar
  83. 83.
    TROGATZ S.H. - In: Lecture notes in biomathematics, S. Levin (ed), vol 69: The Mathematical Structure of the Human Sleep-Wake Cycle. Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1986.CrossRefGoogle Scholar
  84. 84.
    TESSONNEAUD A., COOPER H.M., CALDANI M., LOCATELLI A., VIGUIER-MARTINEZ M.C. - The suprachiasmatic nucleus in the sheep: retinal projections and cytoarchitectural organization. Cell Tissue Res. 278,65–84, 1994.PubMedCrossRefGoogle Scholar
  85. 85.
    TOSINI G., MENAKER M. - Circadian rhythms in cultured mammalian retina. Science 272, 419–421, 1996.PubMedCrossRefGoogle Scholar
  86. 86.
    UCHIDA S., ATSUMI Y., KOJIMA T. - Dynamic relationship between sleep spindles and delta waves during a NREM period. Brain Res. Bull. 33, 351–355, 1994.PubMedCrossRefGoogle Scholar
  87. 87.
    Van den HOOFDAKKER R.H. - Chronobiological theories of nonseasonal affective disorders and their implications for treatment. J. Biol. Rhythms 9, 157–183, 1994.PubMedCrossRefGoogle Scholar
  88. 88.
    WEBB W.B., AGNEW H.W.Jr. - Stage 4 sleep: influence of time course variables. Science 174, 1354–1356, 1971.PubMedCrossRefGoogle Scholar
  89. 89.
    WEHR T.A. - A brain-warming function for REM sleep. Neurosci. Biobehav. Rev. 16, 379–397, 1992.PubMedCrossRefGoogle Scholar
  90. 90.
    WELSH D.K., LOGOTHETIS D.E., MEISTER M., REPPERT S.M. - Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706, 1995.PubMedCrossRefGoogle Scholar
  91. 91.
    WERTH E., ACHERMANN P., BORBELY A.A. - Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. Neuroreport 8, 123–127, 1996.PubMedCrossRefGoogle Scholar
  92. 92.
    WERTH E., ACHERMANN P., BORBELY A.A. - Fronto-occipital EEG power gradients in human sleep. J. Sleep Res. 6, 102–112, 1997.PubMedCrossRefGoogle Scholar
  93. 93.
    WEVER R. - The Circadian System of Man. Berlin: Springer-Verlag, 1979.CrossRefGoogle Scholar
  94. 94.
    WIRZ-JUSTICE A. - Biological rhythms in mood disorders. In Psychopharmacology, Fourth Generation of Progress, FE Bloom and DJ Kupfer, eds., Raven Press, New York, 1995, pp 999–1017.Google Scholar
  95. 95.
    ZEPELIN H., RECHTSCHAFFEN A. - Mammalian sleep, longevity, and metabolism. Brain Behav. Ecol. 10, 425–470, 1974.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • D. G. M. Beersma
    • 1
  1. 1.Zoological LaboratoryRUGAA HarenThe Netherlands

Personalised recommendations