Advertisement

Special Topics in Scanning Electron Microscopy

  • Joseph I. Goldstein
  • Dale E. Newbury
  • Patrick Echlin
  • David C. Joy
  • Charles E. Lyman
  • Eric Lifshin
  • Linda Sawyer
  • Joseph R. Michael

Abstract

From the basic description in Chapter 4, the SEM image formation process can be summarized as a geometric mapping of information collected when the beam is sequentially addressed to an xy pattern of specific locations on the specimen. When we are interested in studying the fine-scale details of a specimen, we must understand the factors that influence SEM image resolution. We can define the limit of resolution as the minimum spacing at which two features of the specimen can be recognized as distinct and separate. Such a definition may seem straightforward, but actually applying it to a real situation becomes complicated because we must consider issues beyond the obvious problem of adjusting the beam diameter to the scale of the features of interest. The visibility of a feature must be established before we can consider any issues concerning the spatial scale. For a feature to be visible above the surrounding general background we must first satisfy the conditions contained within the threshold equation (4.26). For a specified beam current, pixel dwell time, and detector efficiency, the threshold equation defines the threshold contrast, the minimum level of contrast (C = ΔS/S max) that the feature must produce relative to the background to be visible in an image presented to the viewer with appropriate image processing.

Keywords

Special Topic Beam Energy Scanning Transmission Electron Microscopy Stereo Pair Tilt Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banbury, J. R., and W. C. Nixon (1967). J. Sci. Instr. 44, 889.CrossRefGoogle Scholar
  2. Boyde, A. (1973). J. Microsc. 98, 452.CrossRefGoogle Scholar
  3. Boyde, A. (1974a). In SEM/1974, IIT Research Institute, Chicago, p. 101.Google Scholar
  4. Boyde, A. (1974b). In SEM/1974, IIT Research Institute, Chicago, p. 93.Google Scholar
  5. Danilatos, G. D. (1988). In Advances in Electronics and Electron Physics, Vol. 71, Academic Press, New York, p. 109.Google Scholar
  6. Danilatos, G. D. (1990). In Advances in Electronics and Electron Physics, Vol.78, Academic Press, New York, p. 1.Google Scholar
  7. Danilatos, G. D. (1993). Scanning Microsc. 7, 57.Google Scholar
  8. Doehne, E. (1997). Scanning 19, 75.CrossRefGoogle Scholar
  9. Dorsey, J. R. (1961). Adv. Electronics Electron Phys. Suppl. 6, 291.Google Scholar
  10. Eades, J. A. (2000). In Electron Backscatter Diffraction in Materials Science (A. J. Schwartz, M. Kumar, and B. L. Adams, eds.), Kluwer/Academic Press, New York, p. 123.CrossRefGoogle Scholar
  11. Farley, A. N., and J. S. Shah (1991). J. Microsc. 164, 107.CrossRefGoogle Scholar
  12. Fathers, D. J., J. P. Jakubovics, D. C. Joy, D. E. Newbury, and H. Yakowitz (1973a). Phys. Stat. Sol. A 20, 535.CrossRefGoogle Scholar
  13. Fathers, D. J., J. P. Jakubovics, D. C. Joy, D. E. Newbury, and H. Yakowitz (1973b). Phys. Stat. Sol. A 22, 609.CrossRefGoogle Scholar
  14. Hein, L. R., F. A. Silva, A. M. M. Nazar, and J. J. Ammann (1999). Scanning 21, 253.CrossRefGoogle Scholar
  15. Howell, P. G. T. (1975). In SEM/1975, IIT Research Institute, Chicago, p. 697.Google Scholar
  16. Humphries, F. J., Y. Huang, I. Brough, and C. Harris (1999). J. Microsc. 195, 212.CrossRefGoogle Scholar
  17. Isabell, T. C., and V. P. Dravid (1997). Ultramicroscopy 67, 59.CrossRefGoogle Scholar
  18. Gopinath, A., K. G. Gopinathan, and P. R. Thomas (1978). In SEM/1978/I, SEM, Inc., AMF O’Hare, Illinois, p. 375.Google Scholar
  19. Griffin, B. J. (2000). Scanning 22, 234.CrossRefGoogle Scholar
  20. Griffin, B. J., and C. Nockolds (1999). In Proceedings 14th International Conference on Electron Microscop (Cancun), Vol. 1, p. 359.Google Scholar
  21. Joy, D. C. (1984). J. Microsc. 136, 241.CrossRefGoogle Scholar
  22. Joy, D. C. (1996). In Proceedings of the Annual Meeting of the Microscopy Society of America (G. W. Bailey, ed.), San Francisco Press, San Francisco, p. 836.Google Scholar
  23. Joy, D. C., and J. P. Jakubovics (1968). Philos. Mag. 17, 61.CrossRefGoogle Scholar
  24. Joy, D. C., D. E. Newbury, and D. L. Davidson (1982). J. Appl. Phys. 53, R81.CrossRefGoogle Scholar
  25. Knoll, M. (1941). Naturwissenschaften 29, 335.CrossRefGoogle Scholar
  26. Judge, A. W. (1950). Stereographic Photography, 3rd ed., Chapman and Hall, London.Google Scholar
  27. Lane, W. C. (1970a). In Proceedings 3rd Annual Stereoscan Colloguium, Kent Cambridge Scientific, Morton Grove, Illinois, p. 83.Google Scholar
  28. Lane, W. C. (1970b). In Proceedings SEM Symposium (O. Johari, ed.), IITRI, Chicago, p. 43.Google Scholar
  29. Lowney, J. R., A. E. Vladar, W. J. Keery, E. Marx, and R. D. Larrabee (1994). Scanning 16(Suppl. IV), 56.Google Scholar
  30. Mansfield, J. (1997). Microsc. Microanal. 3(Suppl. 2), 1207.Google Scholar
  31. Michael, J. R. (2000). In Electron Backscatter Diffraction in Materials Science (A. J.Schwartz, M. Kumar, and B. L. Adams, eds.), Kluwer/Academic Press, New York, p. 75.CrossRefGoogle Scholar
  32. Mohan, A., N. Khanna, J. Hwu, and D. C. Joy (1998). Scanning 20, 436.CrossRefGoogle Scholar
  33. Newbury, D. E. (1996). Scanning 18, 474.CrossRefGoogle Scholar
  34. Newbury, D. E. (2001). Microsc. Microanal. 7(Suppl. 2: Proceedings), 702.Google Scholar
  35. Newbury, D. E., D. C. Joy, P. Echlin, C. E. Fiori, and J. I. Goldstein (1986). Advanced Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, p. 45.Google Scholar
  36. Pawley, J. B. (1984). J. Microsc. 136, 45.CrossRefGoogle Scholar
  37. Pawley, J. B. (1988). Inst. Phys. Conf. Ser. 93 1, 233.Google Scholar
  38. Peters, K.-R. (1982). In SEM/1982/IV, SEM, Inc., AMF O’Hare, Illinois, p. 1359.Google Scholar
  39. Peters, K.-R. (1985). In SEM/1985/IV, SEM, Inc., AMF O’Hare, Illinois, p. 1519.Google Scholar
  40. Ramo, S. (1939). Proc. IRE 27, 584.CrossRefGoogle Scholar
  41. Randle, V., and O. Engler (2000). Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Gordon and Breach, New York.Google Scholar
  42. Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Springer, New York.Google Scholar
  43. Ren, S. X., E. A. Kenik, K. B. Alexander, and A. Goyal (1998). Microsc. Microanal, 4, 15.CrossRefGoogle Scholar
  44. Robinson, V. N. E. (1974). In Proceedings of the 8th International Congress on Electron Microscopy (J .V. Sanders, ed.), Australian Academy of Sciences, Canberra, Australia, p. 50.Google Scholar
  45. Stowe, S. J., and V. N. E. Robinson (1998). Scanning 20, 57.CrossRefGoogle Scholar
  46. Thiel, B. L., I.C. Bache, A. L. Fletcher, P. Meridith, and A. M. Donald (1996). In Proceedings of the Annual Meeting of the Microscopy Society of America (G. W. Bailey, ed.), San Francisco Press, San Francisco, p. 834.Google Scholar
  47. Thornley, R. F. M. (1960). Ph. D. Thesis, University of Cambridge, Cambridge, England.Google Scholar
  48. Vladar, A. E., M. T. Postek, N. Zhang, R. Larrabee, and S. Jones (2001). Reference Material 8091: New Scanning Electron Microscope Sharpness Standard, Proc. SPIE 4344–104.Google Scholar
  49. Wells, O. C. (1960). Br. J. Appl. Phys. 11, 199.CrossRefGoogle Scholar
  50. Wells, O. C., (1974), “Scanning Electron Microscopy”, McGraw-Hill, N.Y.Google Scholar
  51. Wells, O. C. (1999). Scanning 21, 368.CrossRefGoogle Scholar
  52. Wight, S. A., and M. A. Taylor (1995). Microbeam Anal. 2, 391.Google Scholar
  53. Wight, S. A., and C. J. Zeissler (2000). Microsc. Microanal. 6, 798.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Joseph I. Goldstein
    • 1
  • Dale E. Newbury
    • 2
  • Patrick Echlin
    • 3
  • David C. Joy
    • 4
  • Charles E. Lyman
    • 5
  • Eric Lifshin
    • 6
  • Linda Sawyer
    • 7
  • Joseph R. Michael
    • 8
  1. 1.University of MassachusettsAmherstUSA
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Cambridge Analytical Microscopy Ltd.CambridgeEngland
  4. 4.University of TennesseeKnoxvilleUSA
  5. 5.Lehigh University BethlehemBethlehemUSA
  6. 6.State University at AlbanyAlbanyUSA
  7. 7.Ticona LLCSummitUSA
  8. 8.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations