Skip to main content

Abstract

Chapter 9 presented the procedures for performing quantitative electron probe x-ray microanalysis for the casef an ideal specimen. The ideal specimen surface is flat and highly polished to reduce surface roughness to a negligible level so that electron and x-ray interactions are unaffected by geometric effects. Such a highly polished surface has a short-range surface topography (sampled at distances less than 1 μm) that is reduced to an amplitude of a few nanometers and the long-range topography (sampled at distances greater than 100 μm) that is reduced to 100 nm or less. These ideal specimens satisfy three “zeroth” assumptions that underlie the conventional EPMA technique:

  1. 1.

    The only reason that the x-ray intensities measured on the unknown differ from those measured on the standards is that the compositions of specimen and standard are different. Specifically, no other factors such as surface roughness, size, shape, and thickness, which can be generally grouped together as “geometric” factors, act to affect the intensities measured on the unknown.

  2. 2.

    The specimen is homogeneous over the full extent of the interaction volume excited by the primary electron beam and sampled by the primary and secondary x-rays. Because x-rays of different excitation energies are generated with different distributions within the interaction volume, it is critical that the specimen has a uniform composition over the full region. If a thin surface layer of different composition than the underlying bulk material is present, this discontinuity is not properly considered in the conventional matrix correction analysis procedure.

  3. 3.

    The specimen is stable under the electron beam. That is, the interaction volume is not modified through loss of one or more atomic or molecular species by the electron beam over the time period necessary to collect the x-ray spectrum (EDS) or peak intensities (WDS). Biological and polymer specimens are likely to alter composition under electron bombardment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, J. T. (1991) In Electron Probe Quantitation (K. F. J. Heinrich and D. E. Newbury, eds.) (Plenum Press, NY), p. 261.

    Chapter  Google Scholar 

  • Armstrong, J. T. and P. R. Buseck (1975) Anal. Chem.47, 2178.

    Article  CAS  Google Scholar 

  • Barkalow, R. H., R. W. Kraft, and J. I. Goldstein (1972). Met. Trans. 3, 919.

    Article  CAS  Google Scholar 

  • Bastin, G. F., and H. J. M. Heijligers (1984). In Microbeam Analysis—1984, (A. D. Romig, Jr., and J. I. Goldstein, eds.), San Francisco Press, San Francisco, p. 291.

    Google Scholar 

  • Bastin, G. F., and H. J. M. Heijligers (1986a). X-ray Spectrom. 15, 143.

    Article  CAS  Google Scholar 

  • Bastin, G. F., and H. J. M. Heijligers (1986b). Quantitative Electron Probe Microanalysis of Boron in Binary Borides, Internal Report, Eindhoven University of Technology, Eindhoven, The Netherlands.

    Google Scholar 

  • Bastin, G. F., and H. J. M. Heijligers (1990a). Scanning 12, 225.

    Article  CAS  Google Scholar 

  • Bastin, G. F., and H. J. M. Heijligers (1990b). In 12th International Congress on Electron Microscopy (L. Peachey and D. B. Williams, eds.), San Francisco Press, San Francisco, Vol. 2, 216.

    Google Scholar 

  • Bastin, G. F., F. J. J. van Loo, and H. J. M. Heijligers (1984a). X-ray Spectrom. 13, 91.

    Article  CAS  Google Scholar 

  • Bastin, G. F., H. J. M. Heijligers, and F. J. J. van Loo (1984b). Scanning 6, 58.

    Article  CAS  Google Scholar 

  • Bastin, G. F., H. J. M. Heijligers, and F. J. J. van Loo (1986). Scanning 8, 45.

    Article  CAS  Google Scholar 

  • Bright, D. S. (1995). Microbeam Anal. 4, 151.

    CAS  Google Scholar 

  • Cosslett, V. E., and P. Duncumb (1956). Nature 177, 1172.

    Article  Google Scholar 

  • Duncumb, P. (1957). In X-ray Microscopy and Microradiography (V. E. Cosslett, A. Engstrom, and H. H. Pattee, eds.), Academic Press, New York, p. 617.

    Google Scholar 

  • Echlin, P. (1999). Microsc. Microanal. 4, 577.

    Article  Google Scholar 

  • Hall, T. A. (1968) “Some Aspects of the Microprobe Analysis of Biological Specimens,” in Quantitative Electron Probe Microanalysis, (K. F. J. Heinrich, ed.) (NBS Special Publication 298, Washington) p. 269.

    Google Scholar 

  • Hayashi, S. R., and R. B. Bolon (1979). Microbeam Analysis, San Francisco Press, San Francisco, p. 310.

    Google Scholar 

  • Heinrich, K. F. J. (1986). In Proceedings 11th International Conference on X-ray Optics and Microanalysis (J. D. Brown and R. H. Packwood, eds.), University of Western Ontario, London, Ontario, Canada, p. 67.

    Google Scholar 

  • Henke, B. L., P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa (1982). Atomic Data Nuclear Data Tables 27, 1.

    Article  CAS  Google Scholar 

  • Hovington, P., D. Drouin, and R. Gauvin (1997). Scanning 19, 1.

    Article  CAS  Google Scholar 

  • Ingram, P., D. A. Kopf, and A. LeFurgey (1998). Scanning 20, 190.

    Google Scholar 

  • Kitazawa, T. , H. Shuman, and A. P. Somlyo (1983) Ultramicroscopy, 11, 251.

    Article  CAS  Google Scholar 

  • Kyser, D., and Murata, K. (1974). IBM J. Res. Dev., 18, 352.

    Article  CAS  Google Scholar 

  • Marshall, D. J. and T. A. Hall (1966) in X-ray Optics and Microanalysis (R. Castaing, J. Deschamps, and J. Philibort, eds.) (Hermann, Paris) p. 374.

    Google Scholar 

  • Mott, R. B., R. Batcheler, and J. J. Friel (1995). Microscopy Society of America Proceedings (A. Garrat-Reed, ed.), Jones and Begell, New York, p. 592.

    Google Scholar 

  • Newbury, D. E., and D. S. Bright (1999). Microsc. Microanal. 5, 333.

    Article  CAS  Google Scholar 

  • Newbury, D. E., and R. L. Myklebust (1991). In Microbeam Analysis—1991 (D. G. Howitt, ed.), San Francisco Press, San Francisco, p. 561.

    Google Scholar 

  • Newbury, D. E., R. L. Myklebust, K. F. J. Heinrich, and J. A. Small (1980). “Monte Carlo Electron Trajectory Simulation—An Aid for Particle Analysis” in Characterization of Particles (K. F. J. Heinrich, ed.) (Washington, NBS) 39-60.

    Google Scholar 

  • Newbury, D. E., C. E. Fiori, R. B. Marinenko, R. L. Myklebust, C. R. Swyt, and D. S. Bright (1990a). Anal. Chem. 62, 1159A.

    CAS  Google Scholar 

  • Newbury, D. E., C. E. Fiori, R. B. Marinenko, R. L. Myklebust, C. R. Swyt, and D. S. Bright (1990b). Anal. Chem. 62, 1245A.

    Article  CAS  Google Scholar 

  • Newbury, D. E., R. B. Marinenko, R. L. Myklebust, and D. S. Bright (1991). In Electron Probe Quantitation (K. F. J. Heinrich and D. E. Newbury, eds.), Plenum Press, New York, p. 335.

    Chapter  Google Scholar 

  • Pouchou, J. L. and F. Pichoir (1991). In Electron Probe Quantitation (K. F. J. Heinrich and D. E. Newbury, eds.), Plenum Press, New York, p. 31.

    Chapter  Google Scholar 

  • Pratt, W. K. (1978). Digital Image Processing Wiley, New York.

    Google Scholar 

  • Roomans, G. M. (1981). In SEM/1981/II, SEM, Inc., AMF O’Hare, Illinois, p. 345.

    Google Scholar 

  • Roomans, G. M. (1988). J. Electron Microsc. Technique 9, 19.

    Article  CAS  Google Scholar 

  • Russ, J. C. (1995). The Image Processing Handbook, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Small, J. A., K. F. J. Heinrich, C. E. Fiori, R. L. Myklebust, D. E. Newbury, and M. F. Dilmore (1978). In SEM/1978/I, SEM, Inc., AMF O’Hare, Illinois, p. 445.

    Google Scholar 

  • Small, J. A., K. F. J. Heinrich, D. E. Newbury, and R. L. Myklebust (1979). In SEM/1979/II, SEM, Inc., AMF O’Hare, Illinois, p. 807.

    Google Scholar 

  • Statham, P. J. (1979). Mikrochem. Acta 8(Suppl.), 229.

    CAS  Google Scholar 

  • Statham, P. J. and J. B. Pawley (1978). In SEM/(1978)/I, SEM, Inc., AMF O’Hare, Illinois, p. 469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldstein, J.I. et al. (2003). Special Topics in Electron Beam X-Ray Microanalysis. In: Scanning Electron Microscopy and X-ray Microanalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0215-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0215-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4969-3

  • Online ISBN: 978-1-4615-0215-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics