Special Topics in Electron Beam X-Ray Microanalysis

  • Joseph I. Goldstein
  • Dale E. Newbury
  • Patrick Echlin
  • David C. Joy
  • Charles E. Lyman
  • Eric Lifshin
  • Linda Sawyer
  • Joseph R. Michael

Abstract

Chapter 9 presented the procedures for performing quantitative electron probe x-ray microanalysis for the casef an ideal specimen. The ideal specimen surface is flat and highly polished to reduce surface roughness to a negligible level so that electron and x-ray interactions are unaffected by geometric effects. Such a highly polished surface has a short-range surface topography (sampled at distances less than 1 μm) that is reduced to an amplitude of a few nanometers and the long-range topography (sampled at distances greater than 100 μm) that is reduced to 100 nm or less. These ideal specimens satisfy three “zeroth” assumptions that underlie the conventional EPMA technique:
  1. 1.

    The only reason that the x-ray intensities measured on the unknown differ from those measured on the standards is that the compositions of specimen and standard are different. Specifically, no other factors such as surface roughness, size, shape, and thickness, which can be generally grouped together as “geometric” factors, act to affect the intensities measured on the unknown.

     
  2. 2.

    The specimen is homogeneous over the full extent of the interaction volume excited by the primary electron beam and sampled by the primary and secondary x-rays. Because x-rays of different excitation energies are generated with different distributions within the interaction volume, it is critical that the specimen has a uniform composition over the full region. If a thin surface layer of different composition than the underlying bulk material is present, this discontinuity is not properly considered in the conventional matrix correction analysis procedure.

     
  3. 3.

    The specimen is stable under the electron beam. That is, the interaction volume is not modified through loss of one or more atomic or molecular species by the electron beam over the time period necessary to collect the x-ray spectrum (EDS) or peak intensities (WDS). Biological and polymer specimens are likely to alter composition under electron bombardment.

     

Keywords

Migration Carbide Attenuation Hydrocarbon Nitride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, J. T. (1991) In Electron Probe Quantitation (K. F. J. Heinrich and D. E. Newbury, eds.) (Plenum Press, NY), p. 261.CrossRefGoogle Scholar
  2. Armstrong, J. T. and P. R. Buseck (1975) Anal. Chem.47, 2178.CrossRefGoogle Scholar
  3. Barkalow, R. H., R. W. Kraft, and J. I. Goldstein (1972). Met. Trans. 3, 919.CrossRefGoogle Scholar
  4. Bastin, G. F., and H. J. M. Heijligers (1984). In Microbeam Analysis—1984, (A. D. Romig, Jr., and J. I. Goldstein, eds.), San Francisco Press, San Francisco, p. 291.Google Scholar
  5. Bastin, G. F., and H. J. M. Heijligers (1986a). X-ray Spectrom. 15, 143.CrossRefGoogle Scholar
  6. Bastin, G. F., and H. J. M. Heijligers (1986b). Quantitative Electron Probe Microanalysis of Boron in Binary Borides, Internal Report, Eindhoven University of Technology, Eindhoven, The Netherlands.Google Scholar
  7. Bastin, G. F., and H. J. M. Heijligers (1990a). Scanning 12, 225.CrossRefGoogle Scholar
  8. Bastin, G. F., and H. J. M. Heijligers (1990b). In 12th International Congress on Electron Microscopy (L. Peachey and D. B. Williams, eds.), San Francisco Press, San Francisco, Vol. 2, 216.Google Scholar
  9. Bastin, G. F., F. J. J. van Loo, and H. J. M. Heijligers (1984a). X-ray Spectrom. 13, 91.CrossRefGoogle Scholar
  10. Bastin, G. F., H. J. M. Heijligers, and F. J. J. van Loo (1984b). Scanning 6, 58.CrossRefGoogle Scholar
  11. Bastin, G. F., H. J. M. Heijligers, and F. J. J. van Loo (1986). Scanning 8, 45.CrossRefGoogle Scholar
  12. Bright, D. S. (1995). Microbeam Anal. 4, 151.Google Scholar
  13. Cosslett, V. E., and P. Duncumb (1956). Nature 177, 1172.CrossRefGoogle Scholar
  14. Duncumb, P. (1957). In X-ray Microscopy and Microradiography (V. E. Cosslett, A. Engstrom, and H. H. Pattee, eds.), Academic Press, New York, p. 617.Google Scholar
  15. Echlin, P. (1999). Microsc. Microanal. 4, 577.CrossRefGoogle Scholar
  16. Hall, T. A. (1968) “Some Aspects of the Microprobe Analysis of Biological Specimens,” in Quantitative Electron Probe Microanalysis, (K. F. J. Heinrich, ed.) (NBS Special Publication 298, Washington) p. 269.Google Scholar
  17. Hayashi, S. R., and R. B. Bolon (1979). Microbeam Analysis, San Francisco Press, San Francisco, p. 310.Google Scholar
  18. Heinrich, K. F. J. (1986). In Proceedings 11th International Conference on X-ray Optics and Microanalysis (J. D. Brown and R. H. Packwood, eds.), University of Western Ontario, London, Ontario, Canada, p. 67.Google Scholar
  19. Henke, B. L., P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa (1982). Atomic Data Nuclear Data Tables 27, 1.CrossRefGoogle Scholar
  20. Hovington, P., D. Drouin, and R. Gauvin (1997). Scanning 19, 1.CrossRefGoogle Scholar
  21. Ingram, P., D. A. Kopf, and A. LeFurgey (1998). Scanning 20, 190.Google Scholar
  22. Kitazawa, T. , H. Shuman, and A. P. Somlyo (1983) Ultramicroscopy, 11, 251.CrossRefGoogle Scholar
  23. Kyser, D., and Murata, K. (1974). IBM J. Res. Dev., 18, 352.CrossRefGoogle Scholar
  24. Marshall, D. J. and T. A. Hall (1966) in X-ray Optics and Microanalysis (R. Castaing, J. Deschamps, and J. Philibort, eds.) (Hermann, Paris) p. 374.Google Scholar
  25. Mott, R. B., R. Batcheler, and J. J. Friel (1995). Microscopy Society of America Proceedings (A. Garrat-Reed, ed.), Jones and Begell, New York, p. 592.Google Scholar
  26. Newbury, D. E., and D. S. Bright (1999). Microsc. Microanal. 5, 333.CrossRefGoogle Scholar
  27. Newbury, D. E., and R. L. Myklebust (1991). In Microbeam Analysis—1991 (D. G. Howitt, ed.), San Francisco Press, San Francisco, p. 561.Google Scholar
  28. Newbury, D. E., R. L. Myklebust, K. F. J. Heinrich, and J. A. Small (1980). “Monte Carlo Electron Trajectory Simulation—An Aid for Particle Analysis” in Characterization of Particles (K. F. J. Heinrich, ed.) (Washington, NBS) 39-60.Google Scholar
  29. Newbury, D. E., C. E. Fiori, R. B. Marinenko, R. L. Myklebust, C. R. Swyt, and D. S. Bright (1990a). Anal. Chem. 62, 1159A.Google Scholar
  30. Newbury, D. E., C. E. Fiori, R. B. Marinenko, R. L. Myklebust, C. R. Swyt, and D. S. Bright (1990b). Anal. Chem. 62, 1245A.CrossRefGoogle Scholar
  31. Newbury, D. E., R. B. Marinenko, R. L. Myklebust, and D. S. Bright (1991). In Electron Probe Quantitation (K. F. J. Heinrich and D. E. Newbury, eds.), Plenum Press, New York, p. 335.CrossRefGoogle Scholar
  32. Pouchou, J. L. and F. Pichoir (1991). In Electron Probe Quantitation (K. F. J. Heinrich and D. E. Newbury, eds.), Plenum Press, New York, p. 31.CrossRefGoogle Scholar
  33. Pratt, W. K. (1978). Digital Image Processing Wiley, New York.Google Scholar
  34. Roomans, G. M. (1981). In SEM/1981/II, SEM, Inc., AMF O’Hare, Illinois, p. 345.Google Scholar
  35. Roomans, G. M. (1988). J. Electron Microsc. Technique 9, 19.CrossRefGoogle Scholar
  36. Russ, J. C. (1995). The Image Processing Handbook, CRC Press, Boca Raton, Florida.Google Scholar
  37. Small, J. A., K. F. J. Heinrich, C. E. Fiori, R. L. Myklebust, D. E. Newbury, and M. F. Dilmore (1978). In SEM/1978/I, SEM, Inc., AMF O’Hare, Illinois, p. 445.Google Scholar
  38. Small, J. A., K. F. J. Heinrich, D. E. Newbury, and R. L. Myklebust (1979). In SEM/1979/II, SEM, Inc., AMF O’Hare, Illinois, p. 807.Google Scholar
  39. Statham, P. J. (1979). Mikrochem. Acta 8(Suppl.), 229.Google Scholar
  40. Statham, P. J. and J. B. Pawley (1978). In SEM/(1978)/I, SEM, Inc., AMF O’Hare, Illinois, p. 469.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Joseph I. Goldstein
    • 1
  • Dale E. Newbury
    • 2
  • Patrick Echlin
    • 3
  • David C. Joy
    • 4
  • Charles E. Lyman
    • 5
  • Eric Lifshin
    • 6
  • Linda Sawyer
    • 7
  • Joseph R. Michael
    • 8
  1. 1.University of MassachusettsAmherstUSA
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Cambridge Analytical Microscopy Ltd.CambridgeEngland
  4. 4.University of TennesseeKnoxvilleUSA
  5. 5.Lehigh University BethlehemBethlehemUSA
  6. 6.State University at AlbanyAlbanyUSA
  7. 7.Ticona LLCSummitUSA
  8. 8.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations