Spin and Charge Order in The Vortex Lattice of The Cuprates: Experiment and Theory

  • Subir Sachdev

Abstract

I summarize recent results, obtained with E. Dernier, K. Park, A. Polkovnikov, M. Vojta, and Y. Zhang, on spin and charge correlations near a magnetic quantum phase transition in the cuprates. Static charge order coexisting with dynamic spin correlations has recently been observed around vortices in slightly overdoped Bi2Sr2CaCu2O8+δ (J. E. Hoffman et al., Science 295, 466 (2002)), and neutron scattering experiments have measured the magnetic field dependence of static spin order in the underdoped regime in La2-δSrδCuO4 (B. Lake et al., Nature 415, 299 (2002)) and LaCuO4+y (B. Khaykovich et al. cond-mat/0112505). Our predictions provide a semi-quantitative description of these observations, with only a single parameter measuring distance from the quantum critical point changing with doping level. These results suggest that a common theory of competing spin, charge and superconducting orders provides a unified description of all the cuprates.

Keywords:

Spin density wave charge density wave superconductivity vortex lattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.E. Hoffman, E.W. Hudson, K.M. Lang, V. Madhavan, S.H. Pan, H. Eisaki, S. Uchida, and J.C. Davis, Science 295 (2002) 466.ADSCrossRefGoogle Scholar
  2. [2]
    B. Lake, H.M.R. Rnnow, N.B. Christensen, G. Aeppli, K. Lefmann, D.F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, T.E. Mason, Nature 415 (2002) 299.ADSCrossRefGoogle Scholar
  3. [3]
    B. Khaykovich, Y.S. Lee, S. Wakimoto, K.J. Thomas, R. Erwin, S.-H. Lee, M.A. Kastner, and R..J. Birgeneau, cond-mat/0112505.Google Scholar
  4. [4]
    M. Vojta and S. Sachdev, Phys. Rev. Lett. 83 (1999) 3916; M. Vojta, Y. Zhang and S. Sachdev, Phys. Rev. B62 (2000) 6721; S. Sachdev and N. Read, Int. J. Mod. Phys. B5 (1991) 219.Google Scholar
  5. [5]
    E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87 (2001) 067202.ADSCrossRefGoogle Scholar
  6. [6]
    K. Park and S. Sachdev, Phys. Rev. B64 (2001) 184510.ADSGoogle Scholar
  7. [7]
    S. Sachdev, Proceedings of Spectroscopies in Novel Superconductors, J. Phys. Chem. Solids, to appear, cond-mat/0108238.Google Scholar
  8. [8]
    A. Polkovnikov, S. Sachdev, M. Vojta, and E. Demler, Proceedings of PPHMF IV, World Scientific, Singapore, in press, cond-mat/0110329.Google Scholar
  9. [9]
    Y. Zhang, E. Dernier, and S. Sachdev, cond-mat/0112343.Google Scholar
  10. [10]
    A. Polkovnikov, M. Vojta, and S. Sachdev, to appear on the cond-mat archive in February/March 2002.Google Scholar
  11. [11]
    S. Sachdev and J. Ye, Phys. Rev. Lett. 69 (1992) 2411; A.V. Chubukov and S. Sachdev, Phys. Rev. Lett. 71 (1993) 169.Google Scholar
  12. [12]
    T. Imai, C.P. Slichter, K. Yoshimura, and K. Kosuge, Phys. Rev. Lett. 70 (1993) 1002.ADSCrossRefGoogle Scholar
  13. [13]
    G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, and J. Kulda, Science 278 (1997) 1432.ADSCrossRefGoogle Scholar
  14. [14]
    L. Balents, M.P.A. Fisher, and C. Nayak, Int. J. Mod. Phys. B12 (1998) 1033.ADSGoogle Scholar
  15. [15]
    A.V. Chubukov and S. Sachdev and J. Ye, Phys. Rev. B49 (1994) 11919; S. Sachdev and M. Vojta, Physica B280 (2000) 333.Google Scholar
  16. [16]
    S. Sachdev, C. Buragohain, and M. Vojta, Science 286 (1999) 2479; M. Vojta, C. Buragohain and S. Sachdev, Phys. Rev. B61 (2000) 15152.Google Scholar
  17. [17]
    O. Zachar, S.A. Kivelson, and V.J. Emery, Phys. Rev. B57 (1998) 1422.ADSGoogle Scholar
  18. [18]
    S.-C. Zhang Science 275 (1997) 1089.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    D.P. Arovas, A.J. Berlinsky, C. Kallin, and S.-C. Zhang, Phys. Rev. Lett. 79 (1997) 2871; J.-P. Hu and S.-C. Zhang, cond-mat/0108273.Google Scholar
  20. [20]
    B. Lake, G. Aeppli, K.N. Clausen, D.F. McMorrow, K. Lefmann, N.E. Hussey, N. Mangkorntong, M. Nohara, H. Takagi, T.E. Mason, and A. Schröder, Science 291 (2001) 1759.ADSCrossRefGoogle Scholar
  21. [21]
    S. Sachdev, Phys. Rev. B45 (1992) 389; N. Nagaosa and P.A. Lee, Phys. Rev. B45 (1992) 966.Google Scholar
  22. [22]
    S.R. White and D.J. Scalapino, Phys. Rev. Lett. 80 (1998) 1272; Phys. Rev. B61 (2000) 6320.Google Scholar
  23. [23]
    M. Bosch, W.v. Saarloos, and J. Zaanen, Phys. Rev. B63 (2001) 092501; J. Zaanen and A.M. O1es, Ann. Phys. (Leipzig) 5 (1996) 224.Google Scholar
  24. [24]
    S.A. Kivelson, E. Fradkin, and V.J. Emery, Nature 393 (1998) 550; U. Low, V.J. Emery, K. Fabricius, and S.A. Kivelson, Phys. Rev. Lett. 72 (1994) 1918.Google Scholar
  25. [25]
    H. Tsunetsugu, M. Troyer, and T.M. Rice, Phys. Rev. B51 (1995) 16456.ADSGoogle Scholar
  26. [26]
    C. Nayak and F. Wilczek, Phys. Rev. Lett. 78 (1997) 2465.ADSCrossRefGoogle Scholar
  27. [27]
    H.A. Mook, P. Dai, and F. Dogan, Phys. Rev. Lett. 88 (2002) 097004.ADSCrossRefGoogle Scholar
  28. [28]
    J.M. Tranquada, J.D. Axe, N. Ichikawa, A.R.. Moodenbaugh, Y. Nakamura, and S. Uchida, Phys. Rev. Lett. 78 (1997) 338.ADSCrossRefGoogle Scholar
  29. [29]
    K. Yamada et al., Phys. Rev. B57 (1998) 6165.ADSGoogle Scholar
  30. [30]
    S. Sachdev and K. Park, Annals of Physics, May 2002, cond-mat/0108214.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Subir Sachdev
    • 1
  1. 1.Department of PhysicsYale UniversityNew HavenUSA

Personalised recommendations