Advertisement

Physiology of Functional Activation

  • John A. Detre
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 510)

Abstract

Nearly all studies of task-specific activation using functional neuroimaging rely on the existence of a close coupling between regional changes in brain metabolism and regional cerebral blood flow (CBF), herein referred to as activation-flow coupling (AFC). Regional CBF changes are used as a surrogate marker for changes in regional brain function, and uncoupling of blood flow and metabolism or neuronal function may result in false negative or false positive activation. Changes in blood flow and metabolism occur with excitatory or inhibitory neurotransmission, both of which are energy consuming processes.

Keywords

Cerebral Blood Flow Functional Magnetic Resonance Imaging Blood Oxygenation Level Dependent Arterial Spin Label Blood Oxygenation Level Dependent Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nudo, R.J. & Masterson, R.B., Stimulation-induced [14CJ2-deoxyglucose labeling of the synaptic activity in the central auditory system. J. Comp. Neurol. 245553–565 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    Villringer, A. & Dimagl, U., Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cereb. Brain Metab. Rev. 7, 240–276 (1995).Google Scholar
  3. 3.
    Aguirre, G.K., Zarahn, E. & D’Esposito, M., The variability of human BOLD hemodynamic responses. Neuroimage 8 360–9 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    Powers, W.J., Fox, P.T. & Raichle, M.E., The effect of carotid artery disease on the cerebrovascular response to physiologic stimulation. Neurology 38 1475–8 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    Stoll, M., Seidel, A., Schimrigk, K. & Hamann, G.F., Hand gripping and acetazolamide effect in normal persons and patients with carotid artery disease. J. Neuroimaging 8 27–31 (1998).PubMedGoogle Scholar
  6. 6.
    Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S. & Turner, R., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89 5675–5679 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    Ogawa, S., Menon, R.S., Tank, D.W., Kim, S.G., Merkle, H., Ellerman, J.M. & Ugurbil, K., Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys. J. 64 803–12 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    Mandeville, J.B., Marota, J.J.A., Ayata, C., Moskowitz, M.A., Weisskoff, R.M. & Rosen, B.R., MRI measurement of the temporal evolution of relative CMRO2 during rat forepaw stimulation. Magn. Reson. Med. 42 944–51 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    Thulbom, K.R., Waterton, J.C., Matthews, P.M. & Radda, G.K., Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim. Biophys. Acta 714, 265–70 (1982).CrossRefGoogle Scholar
  10. 10.
    Stehling, M.K., Turner, R. & Mansfield, P., Echo planar imaging: magnetic resonance imaging in a fraction of a second. Science 254, 43–50 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    Buxton, R.B. & Frank, L.R., A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab. 17, 64–72 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    Detre, J.A., Leigh, J.S., Williams, D.S. & Koretsky, A.P., Perfusion imaging. Magn. Reson. Med. 23, 37–45 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    Kwong, K.K., Chesler, D.A., Weisskoff, R.M., Donahue, K.M., DAvis, T.L., Ostergaard, L., Campbell, T.A. & Rosen, B.R., MR perfusion studies with T 1 -weighted echo planar imaging. Magn. Reson. Med. 34 878–887 (1995).PubMedCrossRefGoogle Scholar
  14. 14.
    Kim, S.G. & Tsekos, N.V., Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn. Reson. Med. 37, 425–35 (1997).PubMedCrossRefGoogle Scholar
  15. 15.
    Silva, A.C., Lee, S.-P., Yang, G., ladecola, C. & Kim, S.-G., Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J. Cereb. Blood Flow Metab. 19 871–9 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    Roy, C.S. & Sherrington, C.S., On the regulation of the blood-supply of the brain. J. Physiol. 11, 85–108 (1890).PubMedGoogle Scholar
  17. 17.
    Fox, P.T. & Raichle, M.E., Focal physiological tncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 83, 1140–1144 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    Powers, W.J., Hirsch, I.B. & Cryer, P.E., Effect of stepped hypoglycemia on regional cerebral blood flow response to physiological bran activation. Am. J. Physiol. 270, H554–9 (1996).PubMedGoogle Scholar
  19. 19.
    Lindauer, U., Megow, D., Schultze, J., Weber, J.R. & Dimagl, U., Nitric oxide synthase inhibition does not affect somatosensory evoked potentials in the rat. Neurosci. Lett. 216, 207–10 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    Shulman, R.G., Hyder, F. & Rotheman, D.L., Cerebral energetic and the glycogen shunt: Neurochemical basis of functional imaging. Proc. Natl. Acad. Sci. USA 98 6417–22 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    Magistretti, P.J. & Pellerin, L., Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil. Trans. Soc. Lond. B 354 1155–63 (1999).CrossRefGoogle Scholar
  22. 22.
    Ido, Y., Chang, K., Woolsey, T.A. & Williamson, J.R., NADH: sensor of blood flow need in brain, muscle, and other tissues. FASEB 15 1419–21 (2001).Google Scholar
  23. 23.
    Malonek, D. & Grinvald, A., Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272, 551–4 (1996).PubMedCrossRefGoogle Scholar
  24. 24.
    Menon, R.S., Hu, X., Andersen, P., Ugurbil, K. & Ogawa, S., Cerebral oxy/deoxy hemoglobin changes during neural activation: MRI timecourse correlates to optical reflectance measurements.SMR 2nd MeetingBook of Abstracts68 (1994).Google Scholar
  25. 25.
    Yacoub, E., Le, T.H., Ugurbil, K. & Hu, X., Further evaluation of the initial negative response in functional magnetic resonance imaging. Magn. Reson. in Med. 41 436–41 (1999).CrossRefGoogle Scholar
  26. 26.
    Vanzetta, I. & Grinvald, A., Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286, 1555–8 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    Ances, B.M., Wilson, D.F., Greenberg, J.H. & Detre, J.A., Dynamic changes in CBF, 02 tension and calculated CMRO2 during functional activation using oxygen phosphorescence quenching. J. Cereb. Blood Flow Metab. 21 511–6 (200lb).CrossRefGoogle Scholar
  28. 28.
    Ances, B.M., Buerk, D.G., Greenberg, J.H. & Detre, J.A., Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neurosci. Lett. 306, 106–10 (2001a).CrossRefGoogle Scholar
  29. 29.
    Mintun, M.A., Lundstrom, B.N., Snyder, A.Z., Vlassenko, A.G., Shulman, G.L. & Raichle, M.E., Blood flow and oxygen delivery to human brain during functional activity: THeoretical modeling and experimental data. Proc. Natl. Acad. Sci. USA 98 6859–64 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    Menon, R.S., Ogawa, S., Strupp, J. & Ugurbil, K., Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J. Neurophys. 77, 2780–7 (1997).Google Scholar
  31. 31.
    Kim, D.S., Duong, T.Q. & Kim, S.G., High-resolution mapping of iso-orientation columns by fMRI. Nat. Neurosci. 3, 164–9 (2000).PubMedCrossRefGoogle Scholar
  32. 32.
    Yang, X., Hyder, F. & Shulman, R.G., Activation of single whisker barrel in rat localized by functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 475–8 (1996).PubMedCrossRefGoogle Scholar
  33. 33.
    Disbrow, E.A., Slutsky, D.A., Roberts, T.P. & Krubitzer, L.A., Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiolcgy. Proc. Natl. AdcadSci. USA 97, 9718–23 (2000).CrossRefGoogle Scholar
  34. 34.
    Logothesis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A., Neurophysiological investigation of the basis of the fMRI signal. Nature 412 150–7 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • John A. Detre
    • 1
  1. 1.Department of NeurologyUniversity of Pennsylvania School of MedicinePhiladelphia

Personalised recommendations