How New Gas Applications were Developed

  • Ebbe Almqvist

Abstract

Pneumatic medicine, the use of gas in medical therapy, became popular in the early 1770s when doctors in England and France began introducing various gases into the body. The first gas used was carbon dioxide, which was used to treat diarrhea. It was also inhaled for diseases such as sore throat or tuberculosis and was applied directly on the skin as a treatment for breast cancer. Joseph Priestley tried breathing his newly discovered gas, oxygen, and found that “his breast felt peculiarly light and easy for some time afterwards.” He was one of the first to suggest the therapeutic use of artificially obtained gases. He persuaded the British Lords of the Admiralty in 1772 to equip Captain James Cook’s ships on his second voyage to the South Seas with devices to produce carbonated water in an attempt to cure or prevent scurvy.

Keywords

Combustion Fermentation Sulfide Rubber Martensite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eger II, E. I. (ed.). (1985). Nitrous Oxide N 2 O. London: Edward Arnold and New York: Elsevier.Google Scholar
  2. 2.
    Gilbert, D. L. (1981). Perspective on the history of oxygen and life. In Oxygen and living processes (Carter, ed.), pp. 1–43. New York: Springer-Verlag.CrossRefGoogle Scholar
  3. 3.
    Ross, J. A. S., Marr, I. L., and Tunstall, M. E. (1957). Entonox and its development. History of nitrous oxide and oxygen mixtures. In Proceedings of the 8th BOC Priestley Conference, pp. 27–41.Google Scholar
  4. 4.
    Luyet, D. J., and Gehenio, P. M. (1940). Life and death at low temperatures. Normandy, MO: Biodynamics.CrossRefGoogle Scholar
  5. 5.
    Polge, C., Smith, A. V., and Parkes, A. S. (1949). Nature 164:666.CrossRefGoogle Scholar
  6. 6.
    Parkes, A. S. (1951). Preservation of spermatozoa, red blood-cells and endocrine tissue at low temperatures. In Report of the Freezing and Drying Symposium, pp. 99–106. London.Google Scholar
  7. 7.
    Westmore, A. (1984). First freeze-thaw baby is born. New Scientist 1984 April 12:3.Google Scholar
  8. 8.
    Sumida, S. (1986). Cryomedicine. In IIR World Conference on Refrigeration in development, pp. 210–241.Google Scholar
  9. 9.
    Rubinsky, B., and Onik, G. (1991) Cryosurgery: advances in the application of low temperatures to medicine International Journal of Refrigeration 14:190–199.CrossRefGoogle Scholar
  10. 10.
    Smith, E. B. (1986). On the science of deep-sea diving—observations on the respiration of different kinds of air. In Proceedings of the 4th BOC Priestley Conference, pp. 230–235.Google Scholar
  11. 11.
    Williams, L. P. (1960). Humphry Davy. Scientific American 1960(6):106–116.CrossRefGoogle Scholar
  12. 12.
    Rooney, R. P. (1986). Humphry Davy: The romantic chemist. Journal of Chemical Education 63(9):739–740.CrossRefGoogle Scholar
  13. 13.
    Smith, E. B. (1997). Humphry Davy, Thomas Beddoes and the introduction of nitrous oxide anaesthesia. In Proceedings of the 8th BOC Priestley Conference, pp. 155–162.Google Scholar

References

  1. 1.
    Bernsdorf, G. (1986). Auf heissen Spuren vom Schmeltzen, Löten, Schweissen. Düsseldorf, Germany: Deutscher Verlag für Schweisstechnik (DVS), and Leipzig, Germany: VEB Fachbuchverlag.Google Scholar
  2. 2.
    Granjon, R., and Rosemberg, P. (1912). Manuel Pratique de Soudure Autogène, pp. 44–47. Paris: Bibliotheque de l’Office Central de l’Acetylène.Google Scholar
  3. 3.
    Simonson, R. D. (1969). The History of Welding. Lake Zurich, IL: Monticello Books.Google Scholar
  4. 4.
    Nunes, A. C., Jr. (1977). Gas welding origins. Welding Journal 197(6):5–23.Google Scholar
  5. 5.
    Hoffmann, P. (1938). Aus Vier Jahrzehnten deutsche Autogentechnik Ein Rückblick. Halle, Germany: Carl Marhold Verlag, 1938.Google Scholar
  6. 6.
    International Institute of Welding, Commision I. (1980). Some historical notes on thermal cutting processes. Welding in the World 18(l/2):23–28.Google Scholar
  7. 7.
    Davis, A. (191 l).The history and present status of the oxyacetylene process in America. In Proceedings of the International Conference of the Acetylene Association, pp. 109–117.Google Scholar
  8. 8.
    Hypertherm. (1990). A history of plasma cutting. Hanover, NH.Google Scholar

References

  1. 1.
    Brunner, M. (1990). Use of gases within metallurgy. Scand. J. Metallurgy 19:165–173.Google Scholar
  2. 2.
    Jackson, A. (1969). Oxygen steelmaking for steelmakers. London: Butterworth & Co.Google Scholar
  3. 3.
    Moore, C., and Marshall, R. I. (1980). Modern steelmaking methods. London: The Institution of Metallurgists and Chameleon Press.Google Scholar
  4. 4.
    Michaelis, E. (1977). The use of oxygen in the LD process for steel production. In Proceedings of the 1st BOC Priestley Conference, pp. 61–62.Google Scholar
  5. 5.
    Longden, I. P. (1980). Today’s applications for industrial gases. Steel Times 1980:796–801.Google Scholar
  6. 6.
    Anonymous. (1992a). BOS 40 years on.40 years of LD steelmaking. Steel Times 1992:146–158.Google Scholar
  7. 7.
    Eketorp, S. (1981). Gedanken zur Stahlerzeugung in Jahre 2000. Stahl und Risen 101(13–14): 852–860.Google Scholar
  8. 8.
    Masterson, I. F., and Bury, R. P. (1990). Influence of AOD process on the production of stainless steel. Steel Times 1990(1):38–39.Google Scholar
  9. 9.
    Sellers, N. (1980). Chemistry in steelmaking. Journal of Chemical Education 57(2): 139–142.CrossRefGoogle Scholar
  10. 10.
    Matthews, M. J. (1979). The application of nitrogen to heat-treatment processes. IOMA Broadcaster 1979(September–October):4–6.Google Scholar
  11. 11.
    Dale, J. (1983). Nitrogen-based atmospheres as the state-of-the-art. IOMA Broadcaster 1983 (November–December): 13–15.Google Scholar
  12. 12.
    Anonymous. (1992b). ABCs of heat treating Heat Treating (Supplement) 1992 (December): ABC 1-7.Google Scholar
  13. 13.
    Miller, H. R., and Royds, K. (1973). The use of oxygen in glassmaking furnaces. Glass Technology 14(6):171–180.Google Scholar
  14. 14.
    Janetta, G. (1988). The use of oxygen in glass furnaces. In Proceedings of the Annual Meeting of the Scandinavian Society of Glass Technology, pp. 3–4.Google Scholar

References

  1. 1.
    Cook, G. A. (1980).The use of oxygen in the treatment of sewage. Journal of Chemical Education 57(2):137–138.CrossRefGoogle Scholar
  2. 2.
    Union Carbide. (1970). UNOX System. Union Carbide brochure.Google Scholar
  3. 3.
    Rydholm, S. A. (1967). Pulping Processes. New York: Interscience.Google Scholar
  4. 4.
    SUNDS. (1978). No two pulping plants are exactly alike. SUNDS brochure.Google Scholar
  5. 5.
    Dence, C. W., and Reeve, D. W. (eds.). (1996). Pulp Bleaching-Principles and Practice. Atlanta, GA: TAPPI Press.Google Scholar
  6. 6.
    Croon, I. (1992). Use of oxygen in the pulp and paper industry. In Proceedings of the 6th BOC Priestley Conference, pp. 257–264.Google Scholar

References

  1. 1.
    Perry, H. (1974). The gasification of coal. Scientific American 230(3):19–25.CrossRefGoogle Scholar
  2. 2.
    Electric Power Research Institute. (1983). Coal gasification systems: A guide to status, applications and economics. EPRI AP-3109. Final report. Palo Alto CA:Google Scholar
  3. 3.
    Malpus, B. (1984).The elegant use of oxygen. BOC Group Magazine 1984 (December): 10–21.Google Scholar
  4. 4.
    Cady, H. P., and McFarland, D. F. (1907). American Chemical Society. 1907 29:1523.CrossRefGoogle Scholar
  5. 5.
    American Gas Association. (1968). Historical Background of LNG Development. Arlington VA.Google Scholar
  6. 6.
    Haselden, G. G. (1992). The history of liquefied natural gas (LNG). In History and Origins of Cryogenics (R. G. Scurlock, ed.), (Chapter 17) pp. 599–649. New York: Oxford University Press.Google Scholar
  7. 7.
    Drake, E., and Reid, R. C. (1977). The importation of liquefied natural gas. Scientific American 236(4):22–29.CrossRefGoogle Scholar
  8. 8.
    Kleemenko, A. P. (1959) One flow cascade cycle. In Proceedings of thel0th International. Congress of Refrigeration, Vol 1. pp. 34–39.Google Scholar
  9. 9.
    Tachtler, A., and Szyszka, S. (1993). Car fueling with liquid hydrogen. Linde Reports on Science and Technology 51:31.Google Scholar
  10. 10.
    Sloop, J. L. (1978). Liquid Hydrogen as a Propulsion Fuel 1949-59. Washington DC: NASA.Google Scholar
  11. 11.
    Sloop, J. L. (1981). Liquid hydrogen for space flight: The long step from proposal to reality. Journal of the Astronautical Sciences XXIX(4):373–381.Google Scholar
  12. 12.
    Winter, F. H. (1990). Rockets into space. Cambridge MA: Harvard University Press.Google Scholar
  13. 13.
    Marsh, P. (1982). The shy eccentric who fathered the rocket. New Scientist 1982(October 7):26–32.Google Scholar

References

  1. 1.
    Airco. (1961). The freezing and shipping of foods. In Proceedings of the ASHRAE Symposium.Google Scholar
  2. 2.
    Adams, R. J. (1947a). It’s time to investigate nitrous oxide immersion freezing. Part I. Frosted Food Field 1947 (March).Google Scholar
  3. 3.
    Adams, R. J. (1947b). It’s time to investigate nitrous oxide immersion freezing. Part II. Frosted Food Field 1947 (April).Google Scholar
  4. 4.
    Almqvist, E. (1998). Industriella kryoapplikationer [Industrial cryogenic applications]. Kosmos (Swedish Physical Society Annual) 1998:161–174 [in Swedish].Google Scholar
  5. 5.
    McFarland, A. I. (1945). Nitrous oxide meets low temperature refrigeration requirements. Power 1945 (June).Google Scholar
  6. 6.
    Scurlock, R. G. (1990). A matter of degrees: A brief history of cryogenics. Cryogenics 30:483–500.CrossRefGoogle Scholar
  7. 7.
    Sittig, M. (1965). Nitrogen in Industry. C Princeton, NJ: Van Nostrand.Google Scholar
  8. 8.
    Tressler, D. K., and Evers, C. F. (1968). The Freezing Preservation of Foods. Vol. 1. Freezing Fresh Foods. Westport, CT: AVI Publishing Co.Google Scholar
  9. 9.
    Butrica, A. J. (1990). Out of Thin Air: A History of Air Products and Chemicals, Inc. 1940-1990. New York: Praeger.Google Scholar

Further Reading

  1. Barron, R. F. (1985). Cryogenic systems. Oxford: Clarendon Press.Google Scholar
  2. Braton, N. R. (1980). Cryogenic Recycling and Processing. Boca Raton, FL: CRC Press.Google Scholar
  3. Hands, B. A. (ed.). (1986). Cryogenic Technology. London: Academic Press.Google Scholar
  4. Hausen, H., and Linde, H. (1985). Tieftemperaturtechnik. Berlin: Springer-Verlag.Google Scholar
  5. Williamson, K. D., Jr., and Edeskuty, F. J. (1983). Liquid Cryogens. Boca Raton, FL: CRC Press.Google Scholar

References

  1. 1.
    Davidson, J. M., and Kies, F. K. (1985). Microcontamination control for the electronics industry. Part 1. Particle reduction. BOC Technology 3:3–13.Google Scholar
  2. 2.
    Hill, R. J. (1985). Advances in deposition techniques for microchip manufacture. BOC Technology 3:14–19.Google Scholar
  3. 3.
    Lockhart, I. (1986). The development of the special gases business. BOC Technology 5:16–25.Google Scholar
  4. 4.
    Riedel, E., and Schram, J. (1993). Gasanalytik—Damals und heute. Gas Aktuell 40:4–10.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Ebbe Almqvist
    • 1
  1. 1.Ebbe Almqvist ConsultingSweden

Personalised recommendations