Role of Phosphatidylethanolamine in G Protein-Coupled Receptor-Associated Signal Transduction

  • Klára Kitajka
  • Esther Martínez
  • Antonio Miralles
  • Pablo V. Escribá
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)

Abstract

Phospholipids, can array into a wide variety of secondary structures, characterized by different supramolecular organizations, whose formation depends, among other factors, on the lipid “molecular shape”. Phospholipids with a bulky polar head, such as phosphatidylcholine (PC), exhibit a cylindrical “molecular shape” and organize into the widespread lamellar phase, which is a basic structure of biomembranes. Phospholipids with a small polar head, such as phosphatidylethanolamine (PE), exhibit a “molecular shape” similar to a truncated cone, promoting the occurrence of hexagonal (Hll) phases, which has been reported in model and biological membranes. Lipids with large polar head and small hydrophobic moiety (lysophospholipids), tend to form hexagonal (Hl) phases (Figure 1). Here we present evidence about a relevant role of the nonlamellar-prone phospholipid PE: its involvement in membrane receptor-associated signal transduction regulation.

Keywords

Filtration Titration Hexagonal Calorimetry Phosphatidylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.L. Borovyagin, and A.G. Sabelnikov, Lipid polymorphism of model and cellular membranes as revealed by electron microscopyElectron Micros. Rev.2:75 (1989).CrossRefGoogle Scholar
  2. 2.
    J.M. Seddon, Structure of the inverted hexagonal (Hll) phase, and non-lamellar phase transition of lipidsBiochim. Biophys. Acta1031:1 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    P.V. Escribá, M. Sastre, and J.A. García-Sevilla, Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structuresProc. Natl. Acad. Sci. U.S.A.92:7595 (1995).PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    L. Birnbaumer, G proteins in signal transductionAnnu. Rev. Pharmacol. Toxicol.30:675 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    P.V. Escribá, A. Ozaita, C. Ribas, A. Miralles, E. Fodor, T. Farkas, and J.A. García-Sevilla, Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranesProc. Natl. Acad. Sci. U.S.A.94:11375 (1997).PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    J. Rothman, and J. Lenard, Membrane assymetryScience195:743 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    J.L. Soulages, Z. Salamon, M.A. Wells, and G. Tollin, Low concentrations of diacylglycerol promote the binding of apolipophorin III to a phospholipid bilayer: a surface plasmon resonance spectroscopy studyProc. Natl. Acad. Sci. U.S.A.92:5650 (1995).PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    J. Giorgione, R.M. Epand, C. Buda, and T. Farkas, Role of phospholipids containing docohexanoyl chains in modulating the activity of protein kinase CProc. Natl. Acad. Sci. U.S.A.92:9767 (1995).PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Klára Kitajka
    • 1
  • Esther Martínez
    • 1
  • Antonio Miralles
    • 1
  • Pablo V. Escribá
    • 1
  1. 1.Department of BiologyUniversity of the Balearic IslandsPalma de MallorcaSpain

Personalised recommendations