Advertisement

Sphingolipids In Vascular Biology

  • Kelley M. Argraves
  • Lina M. Obeid
  • Yusuf A. Hannun
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)

Abstract

A significant body of evidence now exists to indicate that certain sphingolipids such as the sphingomyelin metabolites, ceramide, sphingosine and sphingosine-1-phosphate (S-1-P) are potent modulators of cell behavior’2. This article reviews recent findings pertaining to the biological activities of two sphingolipids, ceramide and S-1-P. Particular emphasis is placed on description of the effects that these sphingolipids have on cells of the vasculature eramide can be generated via both ade novopathway and through the degradation of sphingomyelin. Thede novobiosynthetic pathway begins with the condensation of palmitoyl-CoA and serine by serine palmitoyl transferase. The resulting product is reduced by an NADPH-dependent reductase and acylated by ceramide synthase in coordination with the action of dihydroceramide desaturase to yield ceramide3’4

Keywords

Actin Stress Fiber Actin Stress Fiber Formation Serine Palmitoyl Transferase Human Arterial Smooth Muscle Cell Ethanolamine Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, H., Desai, N.N., Olivera, A., Seki, T., Brooker, G. and Spiegel, S. Sphingosine-l-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114, 155–67 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    Seufferlein, T. and Rozengurt, E. Sphingosine induces p125FAK and paxillin tyrosine phosphorylation, actin stress fiber formation, and focal contact assembly in Swiss 3T3 cells. J Biol Chem 269, 27610–7 (1994).PubMedGoogle Scholar
  3. 3.
    Hannun, Y.A. in Encyclopedia of Human Biology 133–143 (1997).Google Scholar
  4. 4.
    Michel, C., van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E. and Merrill, A.H., Jr. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J Biol Chem 272, 22432–7 (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    Schissel, S.L., Jiang, X., Tweedie-Hardman, J., Jeong, T., Camejo, E.H., Najib, J., Rapp, J.H., Williams, K.J. and Tabas, I. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 273, 2738–46 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    Soeda, S., Honda, O., Shimeno, H. and Nagamatsu, A. Sphingomyelinase and cell-permeable ceramide analogs increase the release of plasminogen activator inhibitor-1 from cultured endothelial cells. Thromb Res 80, 509–18 (1995).PubMedCrossRefGoogle Scholar
  7. 7.
    Auge, N., Andrieu, N., Negre-Salvayre, A., Thiers, J.C., Levade, T. and Salvayre, R. The sphingomyelinceramide signaling pathway is involved in oxidized low density lipoprotein-induced cell proliferation. J Biol Chem 271, 19251–5 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    Johns, D.G., Osborn, H. and Webb, R.C. Ceramide: a novel cell signaling mechanism for vasodilation. Biochem Biophys Res Commun 237, 95–7 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E.H., Fuks, Z. and Kolesnick, R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–99 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    Haimovitz-Friedman, A., Cordon-Cardo, C., Bayoumy, S., Garzotto, M., McLoughlin, M., Gallily, R., Edwards, C.K., 3rd, Schuchman, E.H., Fuks, Z. and Kolesnick, R. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186, 1831–41 (1997).PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Modur, V., Zimmerman, G.A., Prescott, S.M. and McIntyre, T.M. Endothelial cell inflammatory responses to tumor necrosis factor alpha. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. J Biol Chem 271, 13094–102 (1996).PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Yao, B., Delikat, S., Bayoumy, S., Lin, X.H., Basu, S., McGinley, M., Chan-Hui, P.Y., Lichenstein, H. and Kolesnick, R. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89, 63–72 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    Verheij, M., Bose, R., Lin, X.H., Yao, B., Jarvis, W.D., Grant, S., Birrer, M.J., Szabo, E., Zon, L.I., Kyriakis, J.M., Haimovitz-Friedman, A., Fuks, Z. and Kolesnick, R.N. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380, 75–9 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    Hassler, D.F. and Bell, R.M. Ceramidases: enzymology and metabolic roles. Adv Lipid Res 26, 49–57 (1993).PubMedGoogle Scholar
  15. 15.
    Spiegel, S. and Merrill, A.H., Jr. Sphingolipid metabolism and cell growth regulation. Faseb J 10, 138897 (1996).Google Scholar
  16. 16.
    Liu, B., Obeid, L.M. and Hannun, Y.A. Sphingomyelinases in cell regulation. Semin Cell Dev Biol 8, 311322 (1997).Google Scholar
  17. 17.
    Mao, C., Wadleigh, M., Jenkins, G.M., Hannun, Y.A. and Obeid, L.M. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem 272, 28690–4 (1997).PubMedCrossRefGoogle Scholar
  18. 18.
    Mandala, S.M., Thornton, R., Tu, Z., Kurtz, M.B., Nickels, J., Broach, J., Menzeleev, R. and Spiegel, S. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc Natl Acad Sci U S A 95, 150–5 (1998).PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Igarashi, Y. and Yatomi, Y. Sphingosine 1-phosphate is a blood constituent released from activated platelets, possibly playing a variety of physiological and pathophysiological roles. Acta Biochim Pol 45, 299–309 (1998).PubMedGoogle Scholar
  20. 20.
    Yatomi, Y., Ruan, F., Hakomori, S. and Igarashi, Y. Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 86, 193–202 (1995).PubMedGoogle Scholar
  21. 21.
    Yatomi, Y., Igarashi, Y., Yang, L., Hisano, N., Qi, R., Asazuma, N., Satoh, K., Ozaki, Y. and Kume, S. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem (Tokyo) 121, 969–73 (1997).CrossRefGoogle Scholar
  22. 22.
    Lee, M.J., Van Brocklyn, J.R., Thangada, S., Liu, C.H., Hand, A.R., Menzeleev, R., Spiegel, S. and Hla, T. Sphingosine-l-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552–5 (1998).PubMedCrossRefGoogle Scholar
  23. 23.
    Hla, T. and Maciag, T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem 265, 9308–13 (1990).PubMedGoogle Scholar
  24. 24.
    English, D., Kovala, A.T., Welch, Z., Harvey, K.A., Siddiqui, R.A., Brindley, D.N. and Garcia, J.G. Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. J Hematother Stem Cell Res 8, 627–34 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    Lee, M.J., Thangada, S., Claffey, K.P., Ancellin, N., Liu, C.H., Kluk, M., Volpi, M., Sha’afi, R.I. and Hla, T. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1- phosphate. Cell 99, 301–12 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    An, S., Bleu, T., Huang, W., Hallmark, O.G., Coughlin, S.R. and Goetzl, E.J. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett 417, 279–82 (1997).PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang, G., Contos, J.J., Weiner, J.A., Fukushima, N. and Chun, J. Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-l-phosphate. Gene 227, 89–99 (1999).PubMedCrossRefGoogle Scholar
  28. 28.
    Windh, R.T., Lee, M.J., Hla, T., An, S., Barr, A.J. and Manning, D.R. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem 274, 27351–8 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, Q., Peyruchaud, O., French, K.J., Magnusson, M.K. and Mosher, D.F. Sphingosine 1-phosphate stimulates fibronectin matrix assembly through a Rho-dependent signal pathway. Blood 93, 2984–90 (1999).PubMedGoogle Scholar
  30. 30.
    Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P.G., Coso, O.A., Gutkind, S. and Spiegel, S. Suppression of ceramide-mediated programmed cell death by sphingosine-l-phosphate. Nature 381, 800–3 (1996).PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, F., Nobes, C.D., Hall, A. and Spiegel, S. Sphingosine 1-phosphate stimulates rho-mediated tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 fibroblasts. Biochem J 324, 481–8 (1997).PubMedCentralPubMedGoogle Scholar
  32. 32.
    Bornfeldt, K.E., Graves, L.M., Raines, E.W., Igarashi, Y., Wayman, G., Yamamura, S., Yatomi, Y., Sidhu, J.S., Krebs, E.G., Hakomori, S. and et al. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol 130, 193–206 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    Postma, F.R., Jalink, K., Hengeveld, T. and Moolenaar, W.H. Sphingosine-l-phosphate rapidly induces Rho-dependent neunte retraction: action through a specific cell surface receptor. Embo J 15, 2388–92 (1996).PubMedCentralPubMedGoogle Scholar
  34. 34.
    Ridley, A.J. and Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–99 (1992).PubMedCrossRefGoogle Scholar
  35. 35.
    Braga, V.M., Machesky, L.M., Hall, A. and Hotchin, N.A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137, 1421–31 (1997)PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Prasad, M.V., Dermott, J.M., Heasley, L.E., Johnson, G.L. and Dhanasekaran, N. Activation of Jun kinase/stress-activated protein kinase by GTPase-deficient mutants of G alpha 12 and G alpha 13. J Biol Chem 270, 18655–18659 (1995).PubMedCrossRefGoogle Scholar
  37. 37.
    Kozasa, T., Jiang, X., Hart, M.J., Sternweis, P.M., Singer, W.D., Gilman, A.G., Bollag, G. and Sternweis, P.C. pl15 RhoGEF, a GTPase activating protein for Galphal2 and Galphal3 [see comments]. Science 280, 2109–11 (1998).PubMedCrossRefGoogle Scholar
  38. 38.
    Offermanns, S., Mancino, V., Revel, J.P. and Simon, M.I. Vascular system defects and impaired cell chemokinesis as a result of Galphal3 deficiency. Science 275, 533–6 (1997).PubMedCrossRefGoogle Scholar
  39. 39.
    Hall, A., Paterson, H.F., Adamson, P. and Ridley, A.J. Cellular responses regulated by rho-related small GTP-binding proteins. Philos Trans R Soc Lond B Biol Sci 340, 267–71 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    Wu, J., Spiegel, S. and Sturgill, T.W. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J Biol Chem 270, 11484–8 (1995).PubMedCrossRefGoogle Scholar
  41. 41.
    Lee, M.J., Evans, M. and Hla, T. The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J Biol Chem 271, 11272–9 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Kelley M. Argraves
    • 1
  • Lina M. Obeid
    • 2
  • Yusuf A. Hannun
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyMedical University of South Carolina and the Division of General Internal Medicine at the Ralph H. Johnson Veterans Administration HospitalCharleston
  2. 2.Medical University of South Carolina and the Division of General Internal Medicine at the Ralph H. Johnson Veterans Administration HospitalCharleston
  3. 3.Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharleston

Personalised recommendations