Acetyl-11-Keto-ß-Boswellic Acid (Akba) is Cytotoxic for Meningioma Cells and Inhibits Phosphorylation of the Extracellular-Signal Regulated Kinase 1 and 2

  • Yong Seok Park
  • Joung H. Lee
  • Jyoti A. Harwalkar
  • Judy Bondar
  • Hasan Safayhi
  • Mladen Golubic
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)


Acetyl-l1-keto-13-boswellic acid (AKBA) is a naturally occurring pentacyclic triterpene isolated from the gum resin exudate from the stem of the tree Boswellia serrata (frankincense). AKBA has been recently identified as a novel, orally active, non-redox and non-competitive 5-lipoxygenase inhibitor that also inhibits topisomerase I and II in vitro. Because natural pentacyclic triterpenes have an antiproliferative effect against different tumor types, we investigated the effects of AKBA on the proliferation of 11 primary cell cultures established from human surgical specimens of meningiomas, common central nervous system tumors. Treatment of meningioma cells by AKBA revealed a potent cytotoxic activity with half-maximal inhibitory concentrations in the range of 2-8 RM. At similar, physiologically achievable concentrations, AKBA rapidly (within minutes) and potently inhibited the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk-1 and Erk-2) in meningioma cells stimulated with platelet-derived growth factor BB. High expression level of 5-LO was detected in primary

meningioma cells and surgical specimens by immunoblotting analysis, suggesting the possible role of 5-LO in meningioma tumorigenesis. Considering the critical importance of the Erk-1/2 signal transduction pathway not only in meningiomas but in other human neoplasms, the interruption of signaling through this evolutionarily conserved pathway might be one of the mechanisms by which AKBA induces suppression of proliferation and apoptosis of different tumor types.


Cleveland Clinic Foundation Meningioma Cell Boswellic Acid Potent Cytotoxic Activity Peritumoral Brain Edema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Black, Meningiomas, Neurosurgery 32:643–657 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    J.H. Lee, V. Sundaram, D.J. Stein, D.W. Stacey, and M. Golubic, Reduced expression of schwannomin/merlin in human sporadic meningiomas, Neurosurgery 40:578–587 (1997).PubMedGoogle Scholar
  3. 3.
    T. Todo, E.F. Adams, R. Fahlbush, T. Dingermann, and H. Werner, Autocrine growth stimulation of human meningioma cells by platelet-derived growth factor, JNeurosurgery 84:852–859 (1996).CrossRefGoogle Scholar
  4. 4.
    J. Shu, JH Lee, J.A. Harwalkar, S. Oh-Siskovic, D.W. Stacey, and M. Golubic, Adenovirus-mediated transfer of dominant negative H-ras gene inhibits proliferation of primary meningioma cells, Neurosurgery 44:579–588 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    A.J. Whitmarsh, and R.J. Davis, A central control for cell growth, Nature 403:255–256 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    L.E. Heasley, S. Thaler, M. Nicks, B. Price, K. Skorecki, and R.A. Nemenoff, Induction of cytosolic phospholipase A, by oncogenic ras in human non-small cell lung cancer, JBiol Chem. 272:14501–14504 (1997).CrossRefGoogle Scholar
  7. 7.
    H. Sheng, C.S. Williams, J. Shao, P. Liang, R.N. DuBois, and R.D. Beauchamp, Induction of cyclooxygenase-2 by activated Ha-ras oncogene in Rat-1 fibroblasts and the role of mitogen-activated protein kinase pathway, JBiol Chem, 273:22120–22127 (1998).CrossRefGoogle Scholar
  8. 8.
    L-L. Lin, M. Wartmann, A.Y. Lin, J.L. Knopf, A. Seth, and R.J. Davis, cPLA2 is phosphorylated and activated by MAP kinase, Cell 27:269–278 (1993).CrossRefGoogle Scholar
  9. 9.
    E.S. Silverman, and J.M. Drazen, The biology of 5-lipoxygenase: function, structure, and regulatory mechanisms, Proc Assoc Am Physicians 111:525–536 (1999).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Inamura, M. Abe, K. Ikezaki, and M. Fukui, Leukotriene C4 contents, synthase and catabolic activity in human meningiomas, Neurological Res. 14:405–410 (1992).Google Scholar
  11. 11.
    T. Simmet, W. Luck, M. Winking, W.K. Delank, and B.A. Peskar, Identification and characterization of cysteinyl-leukotriene formation in tissue slices from human intracranial tumors: evidence for their biosynthesis under in vivo conditions, JNeurochem. 54:2091–2099 (1990).CrossRefGoogle Scholar
  12. 12.
    C. Capodici, M.H. Pillinger, G. Han, M.R. Philips, and G. Weissmann, Integrin-dependent homotypic adhesion of neutrophils. Arachidonic acid activates Raf-1/Mek/Erk via a 5-lipoxygenase-dependent pathway, J Clin Invest. 102:165–175 (1998).PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    M.P. Peppelenbosch, L.G. Tertoolen, W.J. Hage, and S.W. de Laat, Epidermal growth factor-induced actin remodeling is regulated by 5-lipoxygenase and cyclooxygenase products, Cell 74:565–575 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Safayhi, T. Mack, J. Sabieraj, M.I. Anazodo, L.R. Subramanian, and H.P. Ammon, Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase, J Pharmacol Exper Therap. 261:1143–1146 (1992).Google Scholar
  15. 15.
    E.R. Sailer, S. Schweizer, S.E. Boden, H.P. Ammon, and H. Safayhi, Characterization of an acetyl-1lketo-13-boswellic acid and arachidonate-binding regulatory site of 5-lipoxygenase using photoaffinity labeling, EurJBiochem. 256:364–368 (1998).Google Scholar
  16. 16.
    H. Safayhi, and E.R. Sailer, Anti-inflammatory actions of pentacyclic triterpenes. Planta Medica 63:487–493 (1997).CrossRefGoogle Scholar
  17. 17.
    T. Glaser, S. Winter, P. Groscurth, H. Safayhi, E.R. Sailer, H.P. Ammon, and M. Weller, Boswellic acids and malignant glioma: induction of apoptosis but no modulation of drug sensitivity, Br J Cancer 80:756–765 (1999).PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    R.F. Hoernlein, T. Orlikowsky, C. Zehrer, D. Niethammer, E.R. Sailer, T. Simmet, G.E. Dannecker, and H.P.T. Ammon, Acetyl-11-keto-13-boswellic acid induced apoptosis in HL60 and CCRF-CEM cells and inhibits topoisomerase I, JPharm Exp Ther. 288:613–619 (1999).Google Scholar
  19. 19.
    Y. Jing, S. Nakajo, L. Xia, K. Nakaya, Q. Fang, S. Waxman, and R. Han, Boswellic acid acetate induces differentiation and apoptosis in leukemia cell lines, Leuk Res. 23:43–50 (1999).PubMedCrossRefGoogle Scholar
  20. 20.
    R.J. Boado, W.M. Pardridge, H.V. Vinters, and K.L. Black, Differential expression of arachidonate 5lipoxygenase transcripts in human brain tumors: Evidence for the expression of a multitranscript family. Proc Nall Acad Sci USA 89:9044–9048 (1992).CrossRefGoogle Scholar
  21. 21.
    B. Buechele, T. Syrovets, E. Gedek, and T. Simmet, Molecular interactions of human topoisomerase I and IIa with boswellic acid as analyzed by surface plasmon resonance, Suppl to Naunyn-S Arch Pharmacol. 359:R8–19, (Abstract) (1999).Google Scholar
  22. 22.
    C-L. Yu, M.H. Tsai, and D.W. Stacey, Serum stimulation of NIH3T3 cells induces the production of lipids able to inhibit GTPase-activating protein activity, Mol Cell Biol. 10:6683–6689 (1990).Google Scholar
  23. 23.
    I. Gupta, A. Parihar, P. Malhotra, G.B. Singh, R. Luedtke, H. Safayhi, and H.P.T. Ammon, Effects of Boswellia serrata gum resin in patients with ulcerative colitis, EurJMed Res. 2:37–43 (1997).Google Scholar
  24. 24.
    R. Hoshino, Y. Chatani, T. Yamori, T. Tsuruo, H. Oka, O. Yoshida, Y. Shimada, S. Ari-i, H. Wada, J. Fujimoto, and M. Kohno, Constitutive activation of the 41/43-kDa mitogen activated protein kinase signaling pathway in human tumors, Oncogene 18:813–822 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    J.S. Sebolt-Leopold, D.T. Dudley, R. Herrera, K. van Becelaere, A. Wiland, R.C. Gowan, H. Tecle, S.D. Barrett, A. Bridges, S. Przybranowski, W.R. Leopold, and A.R. Saltiel, Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo, Nature Med. 5:810–816 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    I. Gupta, V. Gupta, A. Parihar, S. Gupta, R. Luedtke, H. Safayhi, and H.P.T. Ammon, Effects of Boswellia serrata gum resin in patients with bronchial asthma: Results of a double-blind, placebo-controlled, 6-week clinical study, EurJMed Res. 3:1–5 (1998).Google Scholar
  27. 27.
    D-K. Boeker, and M. Winking, Die Rolle von Boswellia-Sauren in der Therapie maligner Gliome, Deutsches Arzteblatt 94:A1197–A1199 (1997).Google Scholar
  28. 28. Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Yong Seok Park
    • 1
  • Joung H. Lee
    • 1
  • Jyoti A. Harwalkar
    • 1
  • Judy Bondar
    • 1
  • Hasan Safayhi
    • 2
  • Mladen Golubic
    • 1
  1. 1.Department of NeurosurgeryCleveland Clinic FoundationCleveland
  2. 2.Department of PharmacologyInstitute of Pharmaceutical SciencesTuebingenGermany

Personalised recommendations