Do Leukotrienes Increase Cell Viability in Human Intestinal Epithelial Cells?

  • John F. Öhd
  • Katarina Wikström
  • Anita Sjölander
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)


In this preliminary report we present data showing that leukotrienes increase the baseline cell viability in human intestinal epithelial cells and that LTB4partially reverses the morphological hallmarks of non-necrotic cell death induced by the COX-2 specific inhibitor NS-398. The proposed signaling mechanisms regulating these events are summarized. Please view the work on LT signal transduction in these cells by Thodeti et al. in this volume.


Adenomatous Polyposis Coli Human Epithelial Cell Intestinal Tumor Phenazine Methosulfate Intestinal Tumor Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Shattuck-Brandt, G. W. Varilek, A. Radhika, F. Yang, et al., Cyclooxygenase 2 expression is increased in the stroma of colon carcinomas from IL-10(-/-) miceGastroenterology118:337 (2000).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Sheng, J. Shao, S. C. Kirkland, P. Isakson, et al., Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2J. Clin. Invest.99:2254 (1997).PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    S. M. Powell, N. Zilz, Y. Beazer-Barclay, T. M. Bryan, et al., APC mutations occur early during colorectal tumorigenesisNature359:235 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    P. J. Morin, A. B. Sparks, V. Korinek, N. Barker, et al., Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APCScience275:1787 (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Munemitsu, I. Albert, B. Souza, B. Rubinfeld, et al., Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor proteinProc. Natl. Acad. Sci. U SA 92: 3046 (1995).PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    W. E. Smalley, and R. N. DuBois, Colorectal cancer and nonsteroidal anti-inflammatory drugsAdv. Pharmacol.39:1 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Hendel, and O. H. Nielsen, Expression of cyclooxygenase-2 mRNA in active inflammatory bowel diseaseAm. J. Gastroenterol.92:1170 (1997).PubMedGoogle Scholar
  8. 8.
    H. Sheng, J. Shao, J. D. Morrow, R. D. Beauchamp, et al., Modulation of apoptosis and Bc1–2 expression by prostaglandin E2 in human colon cancer cellsCancer Res.58:362 (1998).PubMedGoogle Scholar
  9. 9.
    A. Ekbom, C. Helmick, M. Zack, and H. O. Adami, Ulcerative colitis and colorectal cancer. A population-based studyN. Engl. J. Med.323:1228 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    B. Samuelsson, S. E. Dahlen, J. A. Lindgren, C. A. Rouzer, et al., Leukotrienes and lipoxins: structures, biosynthesis, and biological effectsScience237:1171 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Sjölander, E. Grönroos, S. Hammarström, and T. Andersson, Leukotriene D4 and E4 induce transmembrane signaling in human epithelial cells. Single cell analysis reveals diverse pathways at the G-protein level for the influx and the intracellular mobilization of Ca“J. Biol. Chem.265: 20976 (1990).PubMedGoogle Scholar
  12. 12.
    K. R. Lynch, G. P. O’Neill, Q. Liu, D. S. Im, et al., Characterization of the human cysteinyl leukotriene CysLTI receptorNature399:789 (1999).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Yokomizo, T. Izumi, K. Chang, Y. Takuwa, and T. Shimizu, A G-protein-coupled receptor for leukotriene B4that mediates chemotaxisNature387:620 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    J. L. Adolfsson, J. F. Öhd, and A. Sjölander, Leukotriene D4-induced activation and translocation of the G-protein alpha3-subunit in human epithelial cellsBiochem. Biophys. Res. Commun.226:413 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    D. M. Hammerbeck, and D. R. Brown, Presence of immunocytes and sulfidopeptide leukotrienes in the inflamed guinea pig distal colonInflammation20:413 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    C. H. Chiu, M. F. McEntee, and J. Whelan, Sulindac causes rapid regression of preexisting tumors in Min/+ mice independent of prostaglandin biosynthesisCancer Res.57:4267 (1997).PubMedGoogle Scholar
  17. 17.
    C. N. Serhan, J. Z. Haeggstrom, and C. C. Leslie, Lipid mediator networks in cell signaling: update and impact of cytokinesFaseb J.10:1147 (1996).PubMedGoogle Scholar
  18. 18.
    E. Porreca, C. Di Febbo, A. Di Sciullo, D. Angelucci, et al., Cysteinyl leukotriene D4 induced vascular smooth muscle cell proliferation: a possible role in myointimal hyperplasiaThromb. Haemost.76:99 (1996).PubMedGoogle Scholar
  19. 19.
    T. A. Chan, P. J. Morin, B. Vogelstein, and K. W. Kinzler, Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosisProc. Natl. Acad. Sci. USA 95:681 (1998).PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    J. F. Öhd, K. Wikström, and A. Sjölander, Leukotriene induced cell survival in human epithelial intestine cellsMol. Biol. Cell188a (1999).Google Scholar
  21. 21.
    M. F. McEntee, C. H. Chiu, and J. Whelan, Relationship of beta-catenin and Bd-2 expression to sulindacinduced regression of intestinal tumors in Min miceCarcinogenesis20: 635 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • John F. Öhd
    • 1
  • Katarina Wikström
    • 1
  • Anita Sjölander
    • 1
  1. 1.Department of Laboratory Medicine Division of Experimental PathologyLund University, Malmö General HospitalSWEDEN

Personalised recommendations