Advertisement

Plasmid Biology, Conjugation, and Transposition

  • Michael J. Gasson
  • Claire A. Shearman
Part of the The Lactic Acid Bacteria book series (LAAB, volume 3)

Abstract

The movement of genes between strains and species and the rearrangement of genetic material within the genome are critical factors in bacterial evolution. The importance of these processes to bacteria is matched by their value for the development of genetic tools with which to characterize and manipulate individual strains. In this regard, the lactic acid bacteria (LAB) are well endowed, possessing a rich complement of plasmids and transposable genetic elements. Natural processes for gene transfer are also of relevance to the safety evaluation of GM microorganisms. Given the potential of GM LAB for exploitation in food and health, understanding of these processes is important to the establishment of a scientific framework to support regulatory decision making. In this chapter some aspects of the biology of plasmids and transposable elements will be reviewed.

Keywords

Lactic Acid Bacterium Insertion Sequence Environmental Microbiology Conjugal Transfer Plasmid Replication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleshin, V. V., Semenova, E. V., Tarakanov, B. V., and Livshits, V. A. (2000). A family of shuttle vectors for lactic acid bacteria and other gram-positive bacteria based on the plasmid pLF1311 replicon. Microbiology 69: 63–67.CrossRefGoogle Scholar
  2. Aleshin, V. V., Semenova, E. V., Doroshenko, V G., Jomantas, Y. V., Tarakanov, B. V., and Livshits, V. A. (1999). The broad host range plasmid pLF1311 from Lactobacillus fermentum VKM1311. FEMS Microbiology Letters 178: 47–53.CrossRefGoogle Scholar
  3. Anderson, D. G., and McKay, L. L. (1984). Genetic and physical characterisation of recombinant plasmids associated with cell aggregation and high frequency conjugal transfer in Streptococcus lactis ML3. Journal of Bacteriology 158: 954–962.Google Scholar
  4. Bates, E. M., and Gilbert, H. (1989). Characterisation of a cryptic plasmid from Lactobacillus plantarum. Gene 85: 253–258.CrossRefGoogle Scholar
  5. Beifort, M., and Perlman, P. S. (1995). Mechanisms of intron mobility. Journal of Biological Chemistry 270: 30237–30240.CrossRefGoogle Scholar
  6. Benachour, A., Frere, J., and Novel, G. (1995). pUCL287 plasmid from Tetragenococcus halophila (Pediococcus halophila) ATCC 33315 represents a new theta-type replicon family of lactic acid bacteria. FEMS Microbiology Letters 128: 167–176.CrossRefGoogle Scholar
  7. Benachour, A., Flahaut, S., Frere, J., and Novel, G. (1996). Plasmid transfer by electroporation and conjugation in Tetragenococcus and Pediococcus genera and evidence of plasmid-linked metabolic traits. Current Microbiology 32: 188–194.CrossRefGoogle Scholar
  8. Benachour, A., Frere, J., Flahaut, S., Novel, G., and Auffray, Y. (1997). Molecular analysis of the thetareplicating plasmid pUCL287 from Tetragenococcus (Pediococcus) halophilus ATCC33315. Molecular and General Genetics 255: 504–513.CrossRefGoogle Scholar
  9. Biet, F., Cenatiempo, Y., and Fremaux, C. (1999). Characterisation of pFR18, a small cryptic plasmid from Leuconostoc mesenteroides FR52, and its use as a food grade vector. FEMS Microbiology Letters 179: 375–383.CrossRefGoogle Scholar
  10. Bourgoin, F., Guedon, G., and Decaris, B. (1998). Characterization of a novel insertion sequence, IS1194, in Streptococcus thermophilus CNRZ368. Direct DNA sequence submission Accession number Y13626.Google Scholar
  11. Bringel, F., Van Alstine, G. L., and Scott, J. (1992). Transfer of Tn916 between Lactococcus lactis subsp. Lactis strains is nontranspositional: Evidence for a chromosomal fertility factor in strain MG1363. Journal of Bacteriology 174: 5840–5847.Google Scholar
  12. Brito, L., Vieira, G., Santos, M. A., and Paveia, H. (1996). Nucleotide sequence analysis of pOg32, a cryptic plasmid from Leuconostoc. Plasmid 36: 49–54.CrossRefGoogle Scholar
  13. Broadbent, J. R., Sandine, W. E., and Kondo, J. K. (1995). Characteristics of Tn5307 exchange and intergeneric transfer of genes associated with nisin production. Applied Microbiology and Biotechnology 44: 139–146.CrossRefGoogle Scholar
  14. Burrus, V., Roussel, Y., Decaris, B., and Guedon, G. (2000). Characterisation of a novel integrative element, ICEStl, in the lactic acid bacterium Streptococcus thermophilus. Applied and Environmental Microbiology 66: 1749–1753.CrossRefGoogle Scholar
  15. Chopin, M. C., Chopin, A., Rouault, A., and Simon, D. (1984). Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 11: 260–263.CrossRefGoogle Scholar
  16. Coakley, M., Fitzgerald, G. E., and Ross, R. P. (1997). Application and evaluation of the phage resistance- and bacteriocin-encoding plasmid Pmrc0l for the improvement of dairy starter cultures. Applied and Environmental Microbiology 63: 1434–1440.Google Scholar
  17. Cocconcelli, P. S., Elli, M., Riboli, B., and Morelli, L. (1996). Genetic analysis of the replication region of the Lactobacillus plasmid vector pPSC22. Research in Microbiology 147: 619–624.CrossRefGoogle Scholar
  18. Cousineau, B., Smith, D., Lawrence-Cavanagh, S., Mueller, J. E., Yang, J., Mills, D., Manias, D., Dunny, G., Lambowitz, A. A., and Belfort, M. (1998). Retrohoming of a bacterial group II intron: Mobility via complete reverse splicing and rehoming via full reverse splicing. Cell 94: 451–462.CrossRefGoogle Scholar
  19. Davies, F. L., Underwood, H. M., and Gasson, M. J. (1981). The value of plasmid profiles for strain identification in lactic streptococci and the relationship between Streptococcus lactis 712, ML3 and C2. Journal of Applied Bacteriology 51: 325–338.CrossRefGoogle Scholar
  20. Dodd, H. M., Horn, N., and Gasson, M. J. (1990). Analysis of the genetic determinant for production of the peptide antibiotic nisin. Journal of General Microbiology 136: 555–566.CrossRefGoogle Scholar
  21. Dodd, H. M., Horn, N., Hao, Z., and Gasson, M. J. (1992). A lactococcal expression system for engineering nisins. Applied and Environmental Microbiology 58: 3683–3693.Google Scholar
  22. Dodd, H. M., Horn, N., and Gasson, M. J. (1994). Characterization of IS905, a new multicopy insertion sequence identified in lactococci. Journal of Bacteriology 176: 3393–3396.Google Scholar
  23. Donkershoot, J. A., and Thompson, J. (1990). Simultaneous loss of N5-(carboxyethyl) ornithine synthase, nisin production and sucrose fermenting ability by Lactococcus lactis Kl. Journal of Bacteriology 172: 4122–4126.Google Scholar
  24. Duan, K., Liu, C.-Q., Liu, Y.-J., Ren, J., and Dunn, N. W. (1999). Nucleotide sequence and thermostability of pND324, a 3.6 kb plasmid from Lactococcus lactis. Applied Microbiology and Biotechnology 53: 36–42.CrossRefGoogle Scholar
  25. Dufour, A., Rince, A., Uguen, P., and Le Pennec, J. P. (2000). IS1675, a novel lactococcal insertion element, forms a transposon-like structure including the lacticin 481 lantibiotic operon. Journal of Bacteriology 182: 5600–5605.CrossRefGoogle Scholar
  26. Dunny, G. M., and McKay, L. L. (1999). Group II introns and expression of conjugative transfer functions in lactic acid bacteria. Antonie van Leeuwenhoek 76: 77–88.CrossRefGoogle Scholar
  27. Fons, M., Hege, T., Ladire, M., Raibaud, P., Ducluzeau, R., and Maguin, E. (1997). Isolation and characterisation of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37: 199–203.CrossRefGoogle Scholar
  28. Forde, A., and Fitzgerald, G. F. (1999). Bacteriophage defense systems in lactic acid bacteria. Antonie van Leeuwenhoek 76: 139–155.CrossRefGoogle Scholar
  29. Frere, J., Herreman, C., Boutibonnes, P., Novel, M., and Novel, G. (1995). Segregational stability and copy number of the theta-type replicon Rep22 in Lactococcus. Current Microbiology 30: 33–37.CrossRefGoogle Scholar
  30. Frost, L. S., Ippen-Ihler, K., and Skurray, R. A. (1994). Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiology Reviews 58: 162–210.Google Scholar
  31. Garvey, P. D., Van Sinderen, D. P., Twomey, C., Hill, C., and Fitzgerald, G. F. (1995). Molecular genetics of bacteriophage and natural phage defense systems in the genus Lactococcus. International Dairy Journal 5: 905–947.CrossRefGoogle Scholar
  32. Gasson, M. J. (1983). Plasmid complements of Streptococcus lactis NCDO712 and other lactic streptococci after protoplast-induced curing. Journal of Bacteriology 154: 1–9.Google Scholar
  33. Gasson, M. J. (1984). Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiology Letters 21: 7–10.CrossRefGoogle Scholar
  34. Gasson, M. J. (1990). In vivo genetic systems in lactic acid bacteria. FEMS Microbiology Reviews 87: 43–60.CrossRefGoogle Scholar
  35. Gasson, M. J., and Anderson, P. H. (1985). High copy number plasmid vectors for use in lactic streptococci. FEMS Microbiology Letters 30: 193–196.CrossRefGoogle Scholar
  36. Gasson, M. J., and Davies, F. L. (1980). High frequency conjugation associated with Streptococcus lactis donor cell aggregation. Journal of Bacteriology 143: 1260–1264.Google Scholar
  37. Gasson, M. J., and Fitzgerald, G. F. (1994). Gene transfer systems and transposition. In: M. J. Gasson and W. M. de Vos (Eds.), Genetics and biotechnology of lactic acid bacteria (pp. 1–52). London: W. M. Blackie Academic & Professional.CrossRefGoogle Scholar
  38. Gasson, M. J., Swindell, S. R., Maeda, S., and Dodd, H. M. (1992). Molecular rearrangement of lactose plasmid DNA asociated with high-frequency transfer and cell aggregation in Lactococcus lactis. Molecular Microbiology 6: 3213–3223.CrossRefGoogle Scholar
  39. Godon, J.-J., Jury, K., Shearman, C. A., and Gasson, M. J. (1994). The Lactococcus lactis sex factor aggregation gene cluA. Molecular Microbiology 12: 655–663.CrossRefGoogle Scholar
  40. Gonzalez, C. F, and Kunka, B. S. (1985). Transfer of sucrose fermenting ability and nisin production phenotype among lactic streptococci. Applied and Environmental Microbiology 49: 627–633.Google Scholar
  41. Gravesen, A., Josephsen, J., Von Wright, A., and Vogensen, F. (1995). Characterisation of the replicon from the lactococcal theta-replicating plasmid pJW563. Plasmid 34: 105–118.CrossRefGoogle Scholar
  42. Grohmann, E., Moscoso, M., Zechner, E. L., del Solar, G., and Espinosa, M. (1998). In vivo definition of the functional origin of leading strand replication on the lactococcal plasmid pFX2. Molecular and General Genetics 260: 38–47.CrossRefGoogle Scholar
  43. Gruss, A., and Ehrlich, S. D. (1989). The family of highly integrated single-stranded deoxyribonucleic acid plasmids. Microbiological Reviews 53: 231–241.Google Scholar
  44. Guedon, G., Bourgoin, F., Pebay, M., Roussel, Y., Colmin, C., Simonet J. M., and Decaris B. (1995). Characterization and distribution of two insertion sequences IS1191 and iso-IS981, in Streptococcus thermophilus: does intergenetic transfer of insertion sequences occur in lactic acid bacteria co-cultures? Molecular Microbiology 16: 69–78.CrossRefGoogle Scholar
  45. Haandrikman, A. J., C. Van Leeuwen, J. Kok, P. Vos, W. M. de Vos and G. Venema (1990). “Insertion elements on lactococcal proteinase plasmids.” Applied and Environmental Microbiology 56: 1890–1896.Google Scholar
  46. Hayes, F., Daly, C., and Fitzgerald, G. F. (1990). Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 plasmid pCI305. Applied and Environmental Microbiology 56: 202–209.Google Scholar
  47. Hill, C., Daly, C., and Fitzgerald, G. F. (1991). Isolation of chromosomal mutants of Lactococcus lactis subsp. lactis biovar diacetylactis 18–16 after introduction of Tn919. FEMS Microbiology Letters 81: 135–140.CrossRefGoogle Scholar
  48. Hirt, H., R. Wirth and A. Muscholl (1996). “Comparative analysis of 18 sex pheromone plasmids from Enterococcus facaelis: detection of a new insertion element on pADl and implications for the evolution of this plasmid family.” Molecular and General Genetics 252: 640–647.Google Scholar
  49. Horn, N., Swindell, S., Dodd, H. M., and Gasson, M. J. (1991). Nisin biosynthesis genes are encoded by a novel conjugative transposon. Molecular and General Genetics 228: 129–135.Google Scholar
  50. Horng, J. S., Polzin, K. M., and McKay, L. L. (1991). Replication and temperature-sensitive maintainance functions of lactose plasmid pSK11L from Lactococcus lactis subsp. lactis. Journal of Bacteriology 173: 7573–7581.Google Scholar
  51. Huang, D. C., Novel, M., and Novel, G. (1991). A transposon-like element on the lactose plasmid of Lactococcus lactis subsp. lactis 2270. FEMS Microbiology Letters 77: 101–106.CrossRefGoogle Scholar
  52. Hugenholtz, J. (1993). Citrate metabolism in lactic acid bacteria. FEMS Microbiology Letters 12: 165–178.CrossRefGoogle Scholar
  53. Israelson, H., and Hansen, E. B. (1993). Insertion of transposon Tn917 derivatives into the Lactococcus lactis subsp. lactis chromosome. Applied and Environmental Microbiology 59: 21–26.Google Scholar
  54. Jalajakumari, M. B., and Manning, P. A. (1989). Nucleotide sequence of the traD region of the E. coli F sex factor. Gene 81: 195–202.CrossRefGoogle Scholar
  55. Jahns, A., Schafer, A., Geis, A., and Teuber, M. (1991). Identification, cloning and sequencing of the replication region of Lactococcus lactis subsp. lactis biovar diacetylactis Bu2 citrate plasmid pSL2. FEMS Microbiology Letters 80: 253–258.CrossRefGoogle Scholar
  56. Janzen, T., Kleinschmidt, J., Neve, H., and Geis, A. (1992). Sequencing and characterisation of pSTl, a cryptic plasmid from Streptococcus thermophilus. FEMS Microbiology Letters 95: 175–180.CrossRefGoogle Scholar
  57. Johansen, E. and A. Kibenich (1992). “Isolation and characterization of IS1165, an insertion sequence of Leuconostoc mesentaroides subsp. cremoris and other lactic acid bacteria.” Plasmid 27: 200–206.CrossRefGoogle Scholar
  58. Kanatani, K., Tahara, T., Oshimura, M., Sano, K., and Umezawa, C. (1995). Identification of the replication region of Lactobacillus acidophilus plasmid pLA103. FEMS Microbiology Letters 133: 127–130.CrossRefGoogle Scholar
  59. Kantor, A., Montville, T. J., Mett, A., and Shapira, R. (1997). Molecular characterisation of the replicon of the Pediococcus pentosaceus 43200 pediocin A plasmid pMD136. FEMS Microbiology Letters 151: 237–244.CrossRefGoogle Scholar
  60. Kearney, K., Fitzgerald, G. F., and Segers, J. F. M. L. (2000). Identification and characterisation of an active plasmid partition mechanism for the novel Lactococcus lactis plasmid pCI2000. Journal of Bacteriology 182: 30–37.CrossRefGoogle Scholar
  61. Kelly, W. J., Davey, G. P., and Ward, L. J. H. (1998). Conjugative transfer of raffinose metabolism in Lactococcus lactis. FEMS Miocrobiology Letters 167: 145–149.CrossRefGoogle Scholar
  62. Kemplar, G. M., and McKay, L. L. (1979a). Genetic evidence for plasmid-linked lactose metabolism in Streptococcus lactis subsp diacetylactis strains. Applied and Environmental Microbiology 37: 1041–1043.Google Scholar
  63. Kemplar, G. M., and McKay, L. L. (1979b). Characterisation of plasmid deoxyribonucleic acid in Streptococcus lactis ssp. diacetylactis: evidence for plasmid-linked citrate utilization. Applied and Environmental Microbiology 37: 316–323.Google Scholar
  64. Khunajarakr, N., Liu, C.-Q., Charoenchai, P., and Dunn, N. (1999). A plasmid-encoded two-component regulatory system involved in copper-inducible transcription in Lactococcus lactis. Gene 229: 229–235.CrossRefGoogle Scholar
  65. Kiewiet, R., Kok, J., Seegers, J. F. M., Venema, G., and Bron, S. (1993a). The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis. Applied and Environmental Microbiology 59: 358–364.Google Scholar
  66. Kiewiet, R., Bron, S., De Jonge, K., Venema, G., and Seegers, J. F. M. L. (1993b). Theta replication of the lactococcal plasmid pWV02. Molecular Microbiology 10: 319–327.CrossRefGoogle Scholar
  67. Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews 12: 39–86.Google Scholar
  68. Klaenhammer, T. R., and Fitzgerald, G. F. (1994). Bacteriophage and bacteriophage resistance. In: M. J. Gasson and W. M. de Vos (Eds.), Genetics and biotechnology of lactic acid bacteria (pp. 106–168). London: W. M. Blackie Academic & Professional.CrossRefGoogle Scholar
  69. Klein, J. R., Ulrich, C., Wegmann, U., Meyer-Barton, E., Plapp, R., and Henrich, B. (1996). Molecular tools for the genetic modification of dairy lactobacilli. Systematic and Applied Microbiology 18: 493–503.CrossRefGoogle Scholar
  70. Kok, J., Van der Vossen, J. M. B. M., and Venema, G. (1984). Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Applied and Environmental Microbiology 48: 726–731.Google Scholar
  71. Kok, J. (1990). Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiology Reviews 87: 15–42.CrossRefGoogle Scholar
  72. Lambowitz, A. M., and Beifort, M. (1993). Introns as mobile genetic elements. Annual Review of Biochemistry 62: 587–622.CrossRefGoogle Scholar
  73. Langella, P., Le Loir, Y., Ehrlich, S. D., and Gruss, A. (1993). Efficient plasmid mobilisation by pIP501 in Lactococcus lactis subsp. lactis. Journal of Bacteriology 175: 5806–5813.Google Scholar
  74. Le Bourgeois, P., Lautier, M., Mata, M., and Ritzenthaler, P. (1992). New tools for the physical and genetic mapping of Lactococcus strains. Gene 111: 109–114.CrossRefGoogle Scholar
  75. Leelawatcharamas, V., Chia, L. G., Charoenchai, P., Kunajar, N., Liu, C.-Q., and Dunn, N. (1997). Plasmidencoded copper resistance in Lactococcus lactis. Biotechnology Letters 19: 639–643.CrossRefGoogle Scholar
  76. Leenhouts, K. J., Bolhuis, A., Kok, J., and Venema, G. (1994). The sucrose and raffinose operons of Pediococcus pentosaceus PPE1.0 Direct DNA sequence submission Accession number Z32771.Google Scholar
  77. Leenhouts, K. J., Gietema, J., Kok, J., and Venema, G. (1991b). Chromosomal stabilisation of the proteinase genes in Lactococcus lactis. Applied and Environmental Microbiology 57: 2568–2575.Google Scholar
  78. Leenhouts, K. J., Tolner, B., Bron, S., Kok, J., Venema, G., and Seegers, J. F. M. L. (1991a). Nucleotide sequence and characterisation of the broad-host-range lactococcal plasmid pWV0l. Plasmid 26: 55–66.CrossRefGoogle Scholar
  79. Lessl, M., Pansegrau, W., and Lanka, E. (1992). Relationships of DNA-transfer-factors-systems: Essential transfer factors of plasmids RP4, Ti and F share common sequences. Nucleic Acids Research 20: 6099–6100.CrossRefGoogle Scholar
  80. Lin, C. F., and Chung, T. C. (1999). Cloning of erythromycin resistance determinants and replication origins from indigenous plasmids of Lactobacillus reuteri for potential use in construction of cloning vectors. Plasmid 42: 31–41.CrossRefGoogle Scholar
  81. Lin, C. F, Fung, Z. F., Wu, C. L., and Chung, T. C. (1996). Molecular characterisation of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4. Plasmid 36: 116–124.CrossRefGoogle Scholar
  82. Liu, C.-Q., Leelawatcharamas, V., Harvey, M. L., and Dunn, N. W. (1996). Cloning vectors for lactococci based on a plasmid encoding resistance to cadmium. Current Microbiology 33: 35–39.CrossRefGoogle Scholar
  83. Liu, C.-Q., Khunajakr, N., Chia, L. G., Deng, Y-M., Charoenchai, P., and Dunn, N. W. (1997). Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 38: 79–90.CrossRefGoogle Scholar
  84. Matsuura, M., Saldanha, R., Ma, H., Wank, H., Yang, J., Mohr, G., Cavanagh, S., Dunny, G. M., Beifort, M., and Lambowitz, A. M. (1997). A bacterial group II intron encoding reverse transcriptase, maturase and DNA endonuclease activities: Biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Development 11: 3333–3345.CrossRefGoogle Scholar
  85. Maugin, E., Duwat, P., Hege, T., Ehrlich, D., and Gruss, A. (1992). New thermosensitive plasmid for Gram-positive bacteria. Journal of Bacteriology 174: 5633–5638.Google Scholar
  86. McKay, L. L. (1983). Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49: 259–274.CrossRefGoogle Scholar
  87. McKay, L. L., Baldwin, K. A., and Walsh, P. M. (1980). Conjugal transfer of genetic information in group N streptococci. Applied and Environmental Microbiology 40: 84–91.Google Scholar
  88. McKay, L. L., and Baldwin, K. A. (1978). Stabilization of lactose metabolism in Streptococcus lactis C2. Applied and Environmental Microbiology 36: 360–367.Google Scholar
  89. Mills, D. A., Choi, C. K., Dunny, G. M., and McKay, L. L. (1994). Genetic analysis of regions of the Lactococcus lactis subsp. lactis plasmid pRS0l involved in conjugative transfer. Applied and Environmental Microbiology 60: 4413–1420.Google Scholar
  90. Mills, D. A., McKay, L. L., and Dunny, G. M. (1996). Splicing of a group II intron involved in the conjugative transfer of pRS0l in lactococci. Journal of Bacteriology 178: 3531–3538.Google Scholar
  91. Mills, D. A., Manias, D. A., McKay, L. L., and Dunny, G. M. (1997). Homing of a Group II intron from Lactococcus lactis subsp. lactis ML3. Journal of Bacteriology 179: 6107–6111.Google Scholar
  92. Mills, D. A., Phister, T. G., Dunny, G. M., and McKay, L. L. (1998). An origin of transfer (oriT) of the conjugative element pRS0l from Lactococcus lactis subsp. lactis ML3. Applied and Environmental Microbiology 64: 1541–1544.Google Scholar
  93. Murphy, M. C., Steele, J. L., Daly, C. C., and McKay, L. L. (1988). Concomitant conjugal transfer of reduced-bacteriophage-sensitivity mechanisms with lactose- and sucrose-fermenting ability in lactic streptococci. Applied and Environmental Microbiology 54: 1951–1956.Google Scholar
  94. Novel, M., Huang, D. C., and Novel, G. (1988). Transposition of the Streptococcus lactis ssp. lactis Z270 lactose plasmid to pVA797: demonstration of an insertion sequence and its relationship to an inverted repeat sequence isolated by self-annealing. Biochimie 70: 543.CrossRefGoogle Scholar
  95. Oki, M., Kakikawa, M., Taketo, A., and Kodaira, K. (1996). Genome structure of a Lactobacillus plasmid pNMO belonging to the rolling-circle type replicon. Journal of General and Applied Microbiology 42: 271–283.CrossRefGoogle Scholar
  96. O’Sullivan, D., Coffey, A., Fitzgerald, G. F., Hill, C., and Ross, R. R (1998). Design of a phage-insensitive lactococcal dairy starter via sequential transfer of naturally occurring conjugative plasmids. Applied and Environmental Microbiology 64: 4618–4622.Google Scholar
  97. Pillidge, C. J., Cambourn, W. M., and Pearce, L. E. (1996). Nucleotide sequence and analysis of pWCl, a pC194-type rolling circle replicon in Lactococcus lactis. Plasmid 35: 131–140.CrossRefGoogle Scholar
  98. Polzin, K. M., and McKay, L. L. (1991). Identification, DNA sequence and distribution of IS981, a new high-copy number insertion sequence in lactococci. Applied and Environmental Microbiology 57: 734.Google Scholar
  99. Polzin, K. M., and McKay, L. L. (1992). Development of a lactococcal integration vector by using IS981 and a temperature sensitive lactococcal replication region. Applied and Environmental Microbiology 58: 476–184.Google Scholar
  100. Polzin, K. M., and Shimizu-Kadota, M. (1987). Identification of a new insertion element, similar to gram-negative IS26, on the lactose plasmid of Streptococcus lactisMLl. Journal of Bacteriology 169: 5481–5488.Google Scholar
  101. Pouwels, P. H., and Leer, R. J. (1993). Genetics of lactobacilli: Plasmids and gene expression. Antonie van Leeuwenhoek 64: 85–107.CrossRefGoogle Scholar
  102. Rauch, P. J. G., Beerhuyzen, M. M., and de Vos, W. M. (1990). Nucleotide sequence of IS904 from Lactococcus lactis subsp. lactisNILO R5. Nucleic Acids Research 18: 4253.CrossRefGoogle Scholar
  103. Rauch, P. J. G., and de Vos, W. M. (1992). Characterisation of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. Journal of Bacteriology 174: 1280–1287.Google Scholar
  104. Rauch, P. J. G., and de Vos, W. M. (1994). Identification and characterisation of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. Journal of Bacteriology 176: 2165–2171.Google Scholar
  105. Renault, P. P., and Heslot, H. (1987). Selection of Streptococcus lactis mutants defective in malolactic fermentation. Applied and Environmental Microbiology 53: 320–324.Google Scholar
  106. Romero, D. A., and Klaenhammer, T. R. (1990). Characterization of insertion sequence IS946, an iso-ISSI element, isolated from the conjugative lactococcal plasmid pTR2030. Journal of Bacteriology 172: 4151.Google Scholar
  107. Romero, A., and Klaenhammer, T. R. (1992). IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology 58: 699–702.Google Scholar
  108. Romero, A., Slos, P., Castellina, R. L., and Mercenier, A. (1987). Conjugative mobilization as an alternative vector delivery system for lactic streptococci. Applied and Environmental Microbiology 53: 2405–2413.Google Scholar
  109. Sano, K., Otani, M., Okada, Y., Kawamura, R., Umesaki, M., Ohi, Y., Umezawa, C., and Kanatani, K. (1997). Identification of the replication region of the Lactobacillus acidophilus plasmid pLA106. FEMS Microbiology Letters 148: 223–226.CrossRefGoogle Scholar
  110. Scherwitz, K. M., Baldwin, K. A., and McKay, L. L. (1983). Plasmid linkage of a bacteriocin-like substance in Streptococcus lactis subsp. diacetylactis strain WM4: Transferability to Streptococcus lactis. Applied and Environmental Microbiology 45: 1506–1512.Google Scholar
  111. Seegers, J. F. M. L., Bron, S., Franke, C. M., Venema, G., and Kiewiet, R. (1994). The majority of lactococcal plasmids carry a highly related replicon. Microbiology 140: 1291–1300.CrossRefGoogle Scholar
  112. Seegers, J. F. M. L., Zhao, A. C., Meijer, W. J. J., Khan, S. A., Venema, G., and Bron, S. (1995). Structural and functional analysis of the single-strand origin of replication from the lactococcal plasmid pWV0l. Molecular and General Genetics 249: 43–50.CrossRefGoogle Scholar
  113. Seegers, J. F., Van Sinderen, D., and Fitzgerald, G. F. (2000). Molecular characterization of the lactococcal plasmid pCIS3: Natural stacking of specificity subunits of a type I restriction/modification system in a single lactococcal strain. Microbiology 146: 435–443.Google Scholar
  114. Shearman, C. A., Godon, J.-J., and Gasson, M. J. (1996). Splicing of a group II intron in a functional transfer gene of Lactococcus lactis. Molecular Microbiology 21: 45–53.CrossRefGoogle Scholar
  115. Shimizu-Kadota, M., Kiraki, M., Hirokawa, H., and Tsuchida, N. (1985). ISL1: a new transposable element in Lactobacillys casei. Molecular and General Genetics 200: 193.CrossRefGoogle Scholar
  116. Snook, R. J., and McKay, L. L. (1981). Conjugal transfer of lactose fermenting ability among Streptococcus cremoris and Streptococcus lactis strains. Applied and Environmental Microbiology 42: 904–911.Google Scholar
  117. Solaiman, D. K. Y., and Somkuti, G. A. (1998). Characterisation of a novel Streptococcus thermophilus rolling circle plasmid used for vector construction. Applied Microbiology and Biotechnology 50: 174–180.CrossRefGoogle Scholar
  118. del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M., and Diaz-Orejas, R. (1998). Replication and control of circular bacterial plasmids. Microbiology and Molecular Biology Reviews 62: 434-464.Google Scholar
  119. del Solar, G., Moscoso, M., and Espinosa, M. (1993) Rolling circle-replicating plasmids from Gram-positive and Gram-negative bacteria: a wall falls. Molecular Microbiology 8: 789–796.CrossRefGoogle Scholar
  120. Somkuti, G. A., Solaiman, D. K. Y., and Steinberg, D. H. (1998). Structural and functional properties of the hspl6. 4-bearing plasmid pER341 in Streptococcus thermophilus. Plasmid 40: 61–72.CrossRefGoogle Scholar
  121. Tailliez, P., Ehrlich, S. D., and Chopin, M. C. (1994). Characterization of IS1207, an insertion sequence isolated from Lactobacillus helveticus. Gene 145: 75–79.CrossRefGoogle Scholar
  122. Teuber, M., Meile, L., and Schwarz, F. (1999). Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek 76: 115–137.CrossRefGoogle Scholar
  123. Thompson, J. K., Foley, S., McConville, K. J., Nicholson, C., Collins, M. A., and Pridmore, R. D. (1999). Complete sequence of plasmid pLHl from Lactobacillus helveticus ATCC15009: analysis reveals the presence of regions homologous to other native plasmids from the host strain. Plasmid 42: 221–235.CrossRefGoogle Scholar
  124. Trieu-Cout, P., Carlier, C., Martin, P., and Courvalin, P. (1987). Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiology Letters 48: 289–294.CrossRefGoogle Scholar
  125. Van Kranenburg, R., Marugg, J., Van Swam, I.I., Willem, N. J., and de Vos, W. M. (1997). Molecular characterization of plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Molecular Microbiology 24: 387–397.CrossRefGoogle Scholar
  126. Van Kranenburg, R., and de Vos, W. M. (1998). Characterisation of multiple regions involved in replication and mobilization of plasmid pNZ4000 in Lactococcus lactis. Journal of Bacteriology 180: 5285–5290.Google Scholar
  127. Vaughan, E. E., and de Vos, W. M. (1995). Identification and characterization of the insertion element IS 1070 from Leuconostoc lactis NZ6009. Gene 155: 95–100.CrossRefGoogle Scholar
  128. Vedamuthu, E. R., and Neville, J. M. (1986). Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris MS. Applied and Environmental Microbiology 51: 677–682.Google Scholar
  129. Von Wright, A., and Tynkkynen, S. (1987). Construction of Streptococcus lactis ssp. lactis strains with a single plasmid associated with mucoid phenotype. Applied and Environmental Microbiology 53: 1385–1386.Google Scholar
  130. de Vos, W. (1987). Gene cloning and expression in lactic streptococci. FEMS Microbiology Reviews 46: 281–295.Google Scholar
  131. Walker, D. C., and Klaenhammer, T. R. (1994). Isolation of a novel IS3 group insertion element and construction of an integration vector for Lactobacillus spp. Journal of Bacteriology 176: 5330.Google Scholar
  132. Walsh, P. M., and McKay, L. L. (1981). Recombinant plasmid associated with cell aggregation and high-frequency conjugation in Streptococcus lactis. Journal of Bacteriology 146: 937–944.Google Scholar
  133. Wang, T. T., and Lee, B. H. (1997). Plasmids in Lactobacillus. Critical Reviews in Biotechnology 43: 143–148.Google Scholar
  134. Ward, L. J. H., Brown, J. C. S., and Davey, G. P. (1996). Identification and sequence analysis of IS1297, an ISS1-like sequence in a Leuconostoc strain. Gene 174: 259–263.CrossRefGoogle Scholar
  135. Xu, F., Pearce, L. E., and Yu, P.-L. (1991). Construction of a family of lactococcal vectors for gene cloning and translational fusion. FEMS Microbiology Letters 77: 55–60.CrossRefGoogle Scholar
  136. Yu, W., Mierau, I., Mars, A., Johnson, E., Dunny, G. and McKay, L. L. (1995). Novel Insertion Sequence-like Element IS982 in Lactococci. Plasmid 33: 218–225.CrossRefGoogle Scholar
  137. Zuniga, M., Pardo, I., and Ferrer, S. (1996). Nucleotide sequence of plasmid p4028, a cryptic plasmid from Leuconostoc oenos. Plasmid 36: 67–74.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Michael J. Gasson
    • 1
  • Claire A. Shearman
    • 1
  1. 1.Food Safety Science DivisionInstitute of Food ResearchNorwichUK

Personalised recommendations