Intracerebral Recordings of the Bereitschaftspotential and Related Potentials in Cortical and Subcortical Structures in Human Subjects

  • Ivan Rektor


More than thirty-five years after its discovery, the Bereitschaftspotential (BP) remains a very productive research tool in both clinical and cognitive neurophysiology. Despite fruitful research results, there are several basic questions about BP that remain unanswered:
  1. 1.

    Where in the brain is BP generated?

  2. 2.

    What is the relation of BP to some other cerebral phenomena that share common features with BP, such as movement preparation and execution (contingent negative variation, CNV), and even changes in power during an identical testing protocol (event related desynchronization and synchronization, ERD/ERS)?

  3. 3.

    What physiological activity is represented by BP?



Basal Ganglion Supplementary Motor Area Primary Motor Cortex Subcortical Structure Contingent Negative Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alarcon, G., Guy, C. N., Binnie, C. D., Walker, S. R., Elwes, R. D., Polkey, C. E. (1994) Intracerebral propagation of interiactal activity in partial epilepsy: implications for source localisation. J. Neurol. Neurosurg. Psychiatry 57 (4), 435–449.PubMedCrossRefGoogle Scholar
  2. Alexander, G. E. (1994) Basal ganglia-thalamocortical circuits: their role in control of movements. J. Clinical. Neurophysiol. 11, 420–431.CrossRefGoogle Scholar
  3. Arezzo, J., Vaughan, Jr., H. G. (1975) Cortical potentials associated with voluntary movements in the monkey. Brain Research 88, 99–104.PubMedCrossRefGoogle Scholar
  4. Bareš, M., Rektor, I. (1999) Basal ganglia are involved in the generation of auditory and visual evoked potential components - a SEEG study of a contingent negative variation paradigm. Clin. Neurophysiol. 110 (1), 220.Google Scholar
  5. Bauer, H., Korunka, Ch., Leodolter, M. (1993) Possible glial contribution in the electrogenesis of SPs. In: McCallum, W. C. and Curry, S. H., (Eds. ) Slow Potential Changes in the Human Brain, pp. 23–34. New York: Plenum Press.Google Scholar
  6. Beisteiner, R., Hoellinger, P., Lindinger, G., Lang, W., Berthoz, A. (1995) Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr. clin. Neurophysiol. 96, 183–93.Google Scholar
  7. Birbaumer, N., Elbert, T., Canavan, A. G. M., Rockstroh, B. (1990) Slow Potentials of the Cerebral Cortex and Behavior. Phys. Rev. 70, 1–40.Google Scholar
  8. Brunia, C. H. M., Damen, E. J. P. (1988) Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroenceph. clin. Neurophysiol. 69, 234–243.CrossRefGoogle Scholar
  9. Chen, R., Gerloff, C., Hallett, M., Cohen, L. G. (1997) Involvement of the ipsilateral motor cortex in finger movements of different complexities. Ann. Neurol. 41 (2), 247–254.PubMedCrossRefGoogle Scholar
  10. Deecke, L. (1985) Cerebral potentials related to voluntary actions: parkinsonian and normal subjects. In: Delwaide PJ, Agnoli A., (Eds. ) Clinical Neurophysiology in Parkinsonism. Amsterdam, Elsevier 91–105.Google Scholar
  11. Dick, J. P. R., Rothwell, J. C., Day, B. L., Cantello, R., Buruma, O., Gioux, M., Benecke, R., Berardelli, A., Thompson, P. D., Marsden, C. D. (1989) The Bereitschaftspotential is abnormal in Parkinson’s disease. Brain 112, 233–344.PubMedCrossRefGoogle Scholar
  12. Fève, A. P., Bathien, N., Rondot, P. (1991a) Evolution des potentiels corticaux lies au mouvements chez patients parkinsoniens, avant et apres traitement par la levodopa. Neurophysiol. Clin. 21, 105–119.PubMedCrossRefGoogle Scholar
  13. Fève, A. P., Bathien, N., Rondot, P. (1991b) Les potentiels corticaux lies au mouvement de l’homme age. Neurophysiol. Clin. 21, 281–291.PubMedCrossRefGoogle Scholar
  14. Fève, A., Bathien, N., Rondot, P. (1991) Evolution des potentiels corticaux liés au movement chez les patients parkinsoniens, avant et après traitement par la lévodopa. Neurophysiol. Clin. 21, 105–119.PubMedCrossRefGoogle Scholar
  15. Fève, A. P. (1993) Origine sous corticale des potentials pre-moteurs (movement-related-potentials) chez l’homme. Thése de Doctorat. Université Paris 6. Paris.Google Scholar
  16. Frost, B. G., Neill, R. A., Fenelon, B. (1988) The determinants of the non-motoric CNV in a complex, variable foreperiod, information processing paradigm. Biol. Psychol. 27, 1–21.PubMedCrossRefGoogle Scholar
  17. Fuster, J. M. (1984) Behavioral electrophysiology of the prefrontal cortex. TINS 408–414.Google Scholar
  18. Gemba, H., Sasaki, K. (1984) Distribution of Potentials Preceding Visually Initiated and Self-Paced Hand Movements in Various Cortical Areas of the Monkey. Brain Res. 306, 207–214.PubMedCrossRefGoogle Scholar
  19. Grünewald, G., Grünewald-Zuberbier, E., Netz, J., Hömberg, V., Sander, G. (1979) Relationships between the late component of the contingent negative variation and the Bereitschaftspotential. Electroenceph. clin. Neurophysiol. 46, 538–545.PubMedCrossRefGoogle Scholar
  20. Haider, M., Knapp, E. G., Ganglberger, J. A. (1981) Event related slow (DC) Potentials in the Human Brain. Res. Physiol. Biochem. Pharmacol. 88, 125–197.CrossRefGoogle Scholar
  21. Ikeda, A., Luders, H. O., Burgess, R. C., Shibasaki, H. (1992) Movement-related potentials recorded from supplementary motor area and primary motor cortex. Brain 115, 1017–1043.PubMedCrossRefGoogle Scholar
  22. Jahanshahi, M. and Frith, C. D. (1998) Willed action and its impairments. Cognitive Neuropsychology 15, 483–534.PubMedCrossRefGoogle Scholar
  23. Kornhuber, H. H., Deecke, L. (1964) Hirnpotentialaenderung beim Menschen vor und nach Willkuerbewegungen, dargestellt mit Magnetbandspeicherung und Rueckwaertsanalyse. Pfluegers Archiv 281, 52.Google Scholar
  24. Kornhuber, H. H., Deecke, L. (1965) Hirnpotentialanderungen bei Willkurbewegungen und passiven Bewegungen den Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Archiv 284, 1–17.CrossRefGoogle Scholar
  25. Krams, M., Rushworth, M. F. S., Deiber, M-P., Frackowiak, R. S. J., Passingham, R. E. (1998) The preparation, execution and suppression of copied movements in the human brain. Exp. Brain Res. 120, 386–398.PubMedCrossRefGoogle Scholar
  26. Kropotov, J. D. and Etlinger, S. C. (1999) Selection of actions in the basal ganglia-thalamocortical circuits: review and model. Intern. J. Psychophysiol. 31, 197–217.CrossRefGoogle Scholar
  27. Lamarche, M., Louvel, J., Buser, P., Rektor, I. (1995) Intracerebral recordings of slow potentials in a contingent negative variation paradigm: an exploration in epileptic patients. Electroenceph. clin. Neurophysiol. 95, 268–276.PubMedCrossRefGoogle Scholar
  28. Lang, W., Hollinger, P., Eghker, A., Lindinger, G. (1994) Functional Localization of Motor Processes in the Primary and Supplementary Motor Areas. J. Clin. Neurophysiol. 11, 397–419.PubMedCrossRefGoogle Scholar
  29. Lee, B. I., Lüders, H., Lesser, R. P., Dinner, D. S., Morris, H. H. (1986) Cortical potentials related to voluntary and passive finger movements recorded from subdural electrodes in humans. Ann. Neurol. 20, 32–37.PubMedCrossRefGoogle Scholar
  30. Libet, B., Wright, E. W. Jr, Gleason, C. A. (1982) Readiness-potentials preceding unrestricted “spontaneous” vs. pre-planed voluntary acts. Electroenceph. clin. Neurophysiol. 54, 322–335.PubMedCrossRefGoogle Scholar
  31. Libet, B. (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav. Brain Sci. 8, 529–566.CrossRefGoogle Scholar
  32. Mauritz, K. H., Wise, S. P. (1986) Premotor cortex of the rhesus monkey: neuronal activity in anticipation of predictable environmental events. Exp. Brain Res. 61, 229–244.PubMedCrossRefGoogle Scholar
  33. McCallum, W. C. (1975) Behavioural and clinical correlates of brain slow potential changes. Proc R Soc Med 68, 3–6.PubMedGoogle Scholar
  34. McCallum, W. C. (1993) Human Slow Potential Research: A review. In: McCallum, W. C. and Curry, S. H., ((Eds. ) Slow Potential Changes in the Human Brain, pp. 1–11. New York: Plenum Press.Google Scholar
  35. Neshige, R., Lüders, H., Shibasaki, H. (1988) Recording of movement related potentials from scalp and cortex in man. Brain 111, 719–736.PubMedGoogle Scholar
  36. Paus, T., Koski, L., Caramos, Z., Westbury, Ch. (1998) Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport 9 (9) 37–47.CrossRefGoogle Scholar
  37. Posner, M. I., Dehaene, S. (1994) Attentional networks. TINS 17, 75–79.PubMedGoogle Scholar
  38. Price, C. J., Green, D. W., von Studnitz, R. (1999) A functional imaging study of translation and language switching. Brain 122, 2221–2235.PubMedCrossRefGoogle Scholar
  39. Rektor, I., Fève, A., Buser, P., Bathien, N., Lamarche, M. (1994) Intracerebral recording of movement related readiness potentials: an exploration in epileptic patients. Electroenceph. clin. Neurophysiol. 90, 273–283.CrossRefGoogle Scholar
  40. Rektor, I., Švejdová, M. (1995) Spatiotemoporal analysis of interictal spikes. A stereoelectroencephalographic study. Neurophysiol. Clin. 25, 12–18.PubMedCrossRefGoogle Scholar
  41. Rektor, I., Louvel, J., Lamarche, M. (1998) Intracerebral recording of potentials accompanying simple limb movements. A SEEG study in epileptic patients. Electroenceph. clin. Neurophysiol. 107, 277–286.CrossRefGoogle Scholar
  42. Rektor, I. (2000a) Long-lasting simultaneous activation of cortical and subcortical structures in movement preparation and execution. Clinical neurophysiology at the beginning of the 21st century. Suppl. Clin Neurophysiol. 53, 192–195.CrossRefGoogle Scholar
  43. Rektor, I. (2000b) Cortical activation in self-paced versus externally cued movements: a hypothesis. Parkinsonism and Related Disorders 6, 181 -184.PubMedCrossRefGoogle Scholar
  44. Rektor, I., Bareš, M., Kaňovský, P., Kukleta, M. (2001a) Intracerebral recording of readiness potential induced by a complex motor task. Movement Disorders 16, 698–704.PubMedCrossRefGoogle Scholar
  45. Rektor, I., Kaňovský, P., Bareš, M., Louvel, J., Lamarche, M. (2001b) Evoked potentials, ERP, CNV, readiness potential, and movement accompanying potential recorded from the posterior thalamus in human subjects. A SEEG study. Neurophysiologie clinique/Clinical Neurophysiology 31, 1–9.Google Scholar
  46. Rektor, I., Bareš, M., Kubová, D. (2001c) Movement related potentials in the basal ganglia: a SEEG readiness potential study. Clin Neurophysiol, in pressGoogle Scholar
  47. Romo, R., Scarnati, E., Schultz, W. (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. II. Movement-related activity in the anterior striatum. Exp. Brain Res. 91, 385–395.PubMedCrossRefGoogle Scholar
  48. Ruchkin, D. S., Sutton, S., Mahafey, D., Glaser, J. (1986) Terminal CNV in the absence of motor response. Electroenceph. clin. Neurophysiol. 63, 445–463.CrossRefGoogle Scholar
  49. Sasaki, K., Gemba, H., Hashimoto, S., Mizuno, N. (1979) Influences of cerebellar hemispherectomy on slow potentials in the motor cortex preceding self-paced hand movements in the monkey. Neuroscience Letters 15, 23–28.PubMedCrossRefGoogle Scholar
  50. Shibasaki, H., Barrett, G., Halliday, A. M., Halliday, E. (1980) Components of the movement-related cortical potential and their scalp topography. Electroenceph. clin Neurophysiol. 49, 213–226.PubMedCrossRefGoogle Scholar
  51. Shibasaki, H., Barret, G., Halliday, E., Halliday, A. M. (1981) Cortical potentials associated with voluntary foot movement in man. Electroenceph. clin. Neurophysiol. 52, 507–516.PubMedCrossRefGoogle Scholar
  52. Schultz, W., Romo, R. (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. Exp. Brain Res. 91, 363–384.PubMedCrossRefGoogle Scholar
  53. Singh, J., Knight, R. T., Rosenlicht, N., Korun, J. M., Beckley, D. J., Woods, D. L. (1992) Abnormal premovement brain potentials in schizophrenia. Schizophr. Res. 8 (1), 31–41.PubMedCrossRefGoogle Scholar
  54. Sochůrková, D., Rektor, I., Stančák, Jr., A. (2000) Intracranial recordings of readiness potential and event-related desynchronisation in hand and foot movements. Clin. Neurophysiol. 111 (1), 85.Google Scholar
  55. Stančák, Jr., A., Riml, A., Pfurtscheller, G. (1996) The effects of external load on movement-related changes of the sensorimotor EEG rhythms. Electroenceph. clin. Neurophysiol. 102, 495–504.Google Scholar
  56. Streitová, H., Rektor, I., Kubová, D., Bareš, M., Hortová, H. (1999) Activity of the gyrus cinguli in the movement preparation and performance and in the cognitive functions. A SEEG study of readiness potentials, movement accompanying potentials, CNV and P3. Suppl. Parkinsonism & Related Disord. 5, 122.Google Scholar
  57. Vidailhet, M., Atchison, P., Stocchi, F., Thompson, P. D., Rothwell, J. C., Marsden, C. D. (1995) The Bereitschaftspotential preceding stepping in patients with isolated gait ignition failure. Movement Disord. 10, 18–21.PubMedCrossRefGoogle Scholar
  58. Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, C., Cohen, J. (1964) The contingent negative variation: an electro-cortical sign of sensorimotor association in man. Electroenceph. clin. Neurophysiol. 17, 340–344.Google Scholar
  59. Yazawa, S., Ikeda, A., Kunieda, T., Ohara, S., Mima, T., Nagamine, T., Taki, W., Kimura, J., Hori, T., Shibasaki, H. (2000) Human presupplementary motor area is active before voluntary movement: subdural recording of Bereitschaftspotential from medial frontal cortex. Exp. Brain Res. 131 (2), 165–177.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Ivan Rektor
    • 1
  1. 1.1st Department of NeurologyMasaryk University, St. Anne’s HospitalBrnoCzech Republic

Personalised recommendations