Skip to main content

CNV and SPN: Indices of Anticipatory Behavior

  • Chapter

Abstract

In the title of the first report about the Contingent Negative Variation (CNV) two things are suggested: The CNV is a sign of “sensori-motor association” and the CNV is an index for “expectancy” (Walter et al., 1964). In other words, the CNV reflects processes, which are, at first sight, quite different from the processes discussed in the other chapters in this book. Why then is it important to add a “deviant” chapter to this book? There are two reasons. First, the CNV is also a movement-preceding negativity (MPN), just as the Readiness Potential (RP). The RP reflects processes involved in the preparation of voluntary movements, and the CNV reflects processes involved in the preparation of signaled movements. In other words the RP and the CNV are both reflections of anticipatory behavior, at least as far as the motor system is involved. Moreover it doesn’t seem too difficult to put up a case for the view that most of our motor activity is elicited by the presence of some kind of stimuli, rather than being “voluntary”. This being a sufficient reason for a chapter on the CNV, there is a second reason. Anticipatory behavior is not restricted to the motor system; it involves attention to the surrounding and to stimuli, which are relevant for our ongoing behavior. This becomes clear in a simple paradigm such as the forewarned reaction time task, used to elicit a CNV. In such a paradigm, a warning signal (WS) alerts the subject to an upcoming imperative signal (RS) to which the subject has to respond, e. g. by pressing a button. The consequence is that the CNV is a MPN, confounded by activity related to anticipatory attention for the response signal (RS). This causes serious difficulty for the interpretation of the CNV. I will discuss later on a paradigm in which Separation in time of motor preparation and anticipatory attention is possible. The latter function is reflected in a second category of anticipatory slow waves: the Stimulus Preceding Negativity (SPN).

Keywords

  • Slow Wave
  • Clinical Neurophysiology
  • Contingent Negative Variation
  • Late Wave
  • Motor Preparation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-0189-3_13
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4615-0189-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolphs, R., Tranel, D., Damasio, H. and Damasio, A. R. (1995). Fear and the human amygdala. Journal of Neuroscience, 15, 5879–5891.

    PubMed  CAS  Google Scholar 

  • Al-Falahe, N. A., Nagaoka, M. and Vallbo, A. B. (1990). Response profiles of human muscle afferents during active finger movements. Brain, 113, 325–346.

    PubMed  CrossRef  Google Scholar 

  • Barrett, S. E. and Rugg, M. D. (1989a). Asymmetries in event-related potentials during rhyme matching: confirmation of the null effects of handedness. Neuropsychologia, 27, 539–548.

    PubMed  CAS  CrossRef  Google Scholar 

  • Barrett, S. E. and Rugg, M. D. (1989b). Event-related potentials and the semantic matching of faces. Neuropsychologia, 27, 913–922.

    PubMed  CAS  CrossRef  Google Scholar 

  • Barrett, S. E. and Rugg, M. D. (1990). Event-related potentials and the phonological matching of picture names. Brain and Language, 38, 424–437.

    PubMed  CAS  CrossRef  Google Scholar 

  • Besrest, A. and Requin, J. (1973). Development of expectancy wave and the time course of preparatory set in a simple reaction time task. In: Kornblum, S. (Ed. ): Attention and Performance IV, pp. 209–219. New York: Academic Press.

    Google Scholar 

  • Böcker, K. B. E., Brunia, C. H. M., and van den Berg-Lenssen, M. M. C. (1994). A spatiotemporal dipole model of the Stimulus Preceding Negativity (SPN) prior to feedback stimuli. Brain Topography, 7, 71–88.

    PubMed  CrossRef  Google Scholar 

  • Böcker, K. B. E. & Van Boxtel, G. J. M. 1997. Stimulus-preceding negativity: a class of anticipatory slow potentials. In: van Boxtel, G. J. M and Böcker, K. B. E. (Eds. ) Brain and Behavior: Past, Present, and Future, pp. 105–116. Tilburg: Tilburg University Press.

    Google Scholar 

  • Birbaumer, N., Roberts, L. E., Lutzenberger, W., Rockstroh, B., and Elbert, T. (1992). Area-specific self-regulation of cortical slow potentials on the sagittal midline and its effects on behavior. Electroencephalography and Clinical Neurophysiology, 84, 353–361.

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunia, C. H. M. (1980). What is wrong with legs in motor preparation? In: Kornhuber, H. H. and Deecke, L. (Eds. ) Progress in Brain Research, volume 54, Motivation, Motor and Sensory Processes of the Brain, pp. 232–236. Amsterdam: Elsevier.

    Google Scholar 

  • Brunia, C. H. M. (1988). Movement and stimulus preceding negativity. Biological Psychology, 26, 165–178.

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunia, C. H. M. (1993). Stimulus preceding negativity: arguments in favour of non-motoric slow waves. In: McCallum, W. C and Curry, S. H. (Eds., ) Slow Potential Changes in the Human Brain, pp. 147–161. New York: Plenum Press.

    Google Scholar 

  • Brunia, C. H. M. (1999). Neural aspects of anticipatory behavior. Acta Psychologica, 101, 213–242.

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunia, C. H. M. and Damen, E. J. P. (1988). Distribution of slow potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalography and Clinical Neurophysiology, 69, 234–243.

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunia, C. H. M. and Vingerhoets, A. J. J. M. (1980), CNV and EMG preceding a plantar flexion of the foot. Biological Psychology, 11, 181–191.

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunia, C. H. M. and Vingerhoets, A. J. J. M. (1981), Opposite hemisphere differences in movement related potentials preceding foot and finger flexions. Biological Psychology, 13, 261–269.

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunia, C. H. M., Scheirs, J. G. M. and Haagh, S. A. V. M. (1982). Changes of Achilles tendon reflex amplitudes during a fixed foreperiod of for seconds. Psychophysiology, 19, 63–70.

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunia, C. H. M., Haagh, S. A. V. M. & Scheirs, J. G. M. (1985). Waiting to respond. Electrophysiological measurements in man during preparation for a voluntary movement. In: Heuer, H, Kleinbeck, U. and Schmidt, K. H. (Eds. ) Motor Behavior: Programming, control, and acquisition, pp. 35–78. Berlin: Springer Verlag.

    Google Scholar 

  • Brunia, C. H. M., de Jong, B. M., van den Berg-Lenssen, M. M. A. C. & Paans, A. M. J. (2000). Visual feedback about time estimation is related to right hemisphere activation measured by PET. Experimental Brain Research, 130, 328–337.

    CAS  CrossRef  Google Scholar 

  • Coles, M. G. H., Gratton, G. and Donchin, E. (1988). Detecting early communication: using measures of movement-related potentials to illuminate human information processing. Biological Psychology, 26, 69–89.

    PubMed  CAS  CrossRef  Google Scholar 

  • Connor, W. H. & Lang, P. J. (1969). Cortical slow wave and cardiac rate responses in stimulus orientation and reaction time conditions. Journal of Experimental Psychology, 82, 310–320.

    PubMed  CAS  CrossRef  Google Scholar 

  • Chwilla, D. J., & Brunia, C. H. M. (1991). Event-Related potentials to different feedback stimuli. Journal of Psychophysiology,28, 123–132.

    CAS  CrossRef  Google Scholar 

  • Cui, R. Q., Egker, A., Huter, D., Lang, W., Lindinger, G. and Deecke, L. (2000) High-resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task. Clinical Neurophysiology, 111, 1847–1860.

    PubMed  CAS  CrossRef  Google Scholar 

  • Damen, E. J. P. & Brunia, C. H. M. (1987). Changes in heart rate and slow potentials related to motor preparation and stimulus anticipation in a time estimation task. Psychophysiology, 24, 700–713.

    PubMed  CAS  CrossRef  Google Scholar 

  • Damen, E. J. P. & Brunia, C. H. M. (1994). Is a stimulus-conveying task relevant information a sufficient condition to elicit stimulus-preceding negativity (SPN)? Psychophysiology, 31, 129–139.

    PubMed  CAS  CrossRef  Google Scholar 

  • Davis, M., Walker, D. L. and Lee, Y. (1999) Neurophysiology and neuropharmacolgy of startle and its affective modulation. In: Dawson, M. E., Schell, A. M. and Böhmelt, A. H. (Eds. ) Startle Modification. pp. 95–113. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Dawson, M. E., Schell, A. M. and Böhmelt, A. H. (1999). Startle Modification. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Deecke, L. and Kornhuber, H. (1977). Cerebral potentials and the initiation of voluntary movement. In: Desmedt, J. E. (Ed. ) Attention, Voluntary Contraction and Slow Potential Shifts, pp. 132–150. Basel: Karger.

    Google Scholar 

  • De Jong, R., Wierda, M., Mulder, G and Mulder, L. J. M. (1988). Use of partial information in responding. Journal of experimental psychology: Human perception and performance. 14, 682–692.

    PubMed  CrossRef  Google Scholar 

  • Dick, J. P. R., Rothwell, J. C., Day, B. L., Cantello, R., Buruma, 0., Gioux, M., Benecke, R., Bernardelli, A., Thompson, P. D., and Marsden, C. D. (1989). The Bereitschaftspotential is abnormal in Parkinson’s disease. Brain, 112, 233–244.

    PubMed  CrossRef  Google Scholar 

  • Donchin, E., Gerbrandt, L. A., Leiffer, L. and Tucker, L. (1972). Is the contingent negative variation contingent upon a motor response? Psychophysiology, 9, 178–188.

    PubMed  CAS  CrossRef  Google Scholar 

  • Foit, A. B., Grözinger, B and Kornhuber, H. H. (1982). Brain potential differences related to programming, monitoring and outcome of aimed and non-aimed fast and slow movements to a visual target: The movement-monitoring potential (MMP) and the task outcome evaluation potential (TEP). Neuroscience, 7, 571.

    Google Scholar 

  • Fuster JM (1997) The prefrontal cortex: Anatomy, Physiology and Neuropsychology of the Frontal Lobe. 3rd ed. Raven Press: New York.

    Google Scholar 

  • Gaillard, A. W. K. and van Beijsterveld, C. E. M. (1991). Slow brain potentials elicited by a cue signal. Journal of Psychophysiology, 5, 337–347.

    Google Scholar 

  • Grünewald, G., & Grünewald-Zuberbier, E. (1983). Cerebral potentials during voluntary ramp movements in aiming tasks. In: Gaillard, A. W. K. and Ritter, W. (Eds. ), Tutorials in ERP research: Endogenous components, pp. 311–327. Amsterdam: Elsevier.

    CrossRef  Google Scholar 

  • Grünewald, G., Grünewald-Zuberbier, E., Hömberg, V., Schuhmacher, H. (1984). Hemispheric asymmetry of feedback-related slow negative potential shifts in a positioning movement task. In: Karrer, R. and Tueting, P., (Eds. ) Brain and Information: Event-related potentials, pp. 470–476. New York: New York Academy of Sciences.

    Google Scholar 

  • Hamano, T., Lüders, H. O., Ikeda, A., Collura, T. F., Comair, Y. G. and Shibasaki, H. (1997). The cortical generators of the contingent negative variation in humans: a study with subdural electrodes. Electroencephalography and Clinical neurophysiology, 104, 257–268.

    PubMed  CAS  CrossRef  Google Scholar 

  • Heil, M., Rösler, F. and Henninghausen, E. (1996). Topographically distinct cortical activation in episodic long-term memory: The retrieval of spatial versus verbal material. Memory and Cognition, 24, 777–795.

    CAS  CrossRef  Google Scholar 

  • Heil, M., Rösler, F. and Henninghausen, E. (1997). Topography of brain electrical activity dissociates the retrieval of spatial versus verbal information from episodic long-term memory in humans. Neuroscience Letters, 222, 45–48.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hillyard S. A. (1973). The CNV and human behavior. Electroencephalography and Clinical Neurophysiology. Supplement 33, 161–171.

    Google Scholar 

  • Hultin, L., Rossini, P. Romani, G. L., Högstedt, P, Tecchio, F. and Pizella, V. (1996). Neuromagnetic localization of the late component of the contingent negative variation. Electroencephalography and Clinical Neurophysiology, 98, 435–438.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ikeda, A., Shibasaki, H., Nagamine, T., Terada, K., Kaji, R., Fukuyama, H. and Kimura, J. (1994). Dissociation between contingent negative variation and Bereitschaftspotential in a patient with cerebellar efferent lesion. Electroencephalography and Clinical Neurophysiology, 90, 359–364.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ikeda, A., Shibasaki, H., Kaji, R., Terada, K., Nagamine, T., Honda, M. and Kimura, J (1997). Dissociation between contingent negative variation and Bereitschaftspotential in a patient with Parkinsonism. Electroencephalography and Clinical Neurophysiology, 102, 142–151.

    PubMed  CAS  CrossRef  Google Scholar 

  • Jahanshahi, M., Jenkins, I. H., Brown, R. G., Marsden, C. D., Passingham, R. E. and Brooks, D. J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.

    PubMed  CrossRef  Google Scholar 

  • Jarvilehto, T. and Frühstorfer, H. (1970). Differentation between slow cortical potentials associated with motor and mental acts. Experimental Brain Research, 11, 309–317.

    CAS  CrossRef  Google Scholar 

  • Kitamura, J-I, Shibasaki, H. and Kondo, T. (1993). A cortical slow potential is larger before an isolated movement of a single finger than simultaneous movement of two fingers. Electroencephalography and clinical Neurophysiology, 86, 252–258.

    PubMed  CAS  CrossRef  Google Scholar 

  • Klein, C, Berg, P., Cohen, R., Elbert, T. and Rockstroh, B. (1993). Topography of CNV and PINV in schizophrenic patients and healthy subjects during a delayed matching-to-sample task. Journal of Psychophysiology, 11, 322–334.

    Google Scholar 

  • Kristeva, R., Jankov, E. and Gantchev, G. (1987). Differences in slow potentials in Bereitschaftspotential and Contingent Negative Variation. In: Johnson Jr., R., Rohrbaugh J. W. and Parasuraman R., (Eds. ) Current Trends in Event-related Potential Research. EEG supplement 40, 41–46.

    Google Scholar 

  • Kutas, M. and Donchin, E. (1977). The effects of handedness, responding hand, response force, and asymmetry of readiness potential. In: Desmedt J. E. (Ed. ) Attention, Voluntary Contraction and Slow Potential Shifts, pp 189–210. Basel: Karger.

    Google Scholar 

  • Kutas, M. and Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205.

    PubMed  CAS  CrossRef  Google Scholar 

  • Lacey, J. I. and Lacey, B. C. (1973). Experimental association and dissociation of phasic bradycardia and vertex-negative wave: A psychophysiological study of attention and response intention. In: McCallum, W. C. and Knott, J. R. (Eds. ) Event-related Slow Potentials of the Brain. Their relations to behaviour, pp. 87–94. Amsterdam: Elsevier.

    Google Scholar 

  • Lacey, J. I. and Lacey, B. C. (1974). Some autonomic-central nervous system interrelationships. In: Black, P. (Ed. ) Physiological correlates of emotion. pp. 205–227. New York: Academic Press.

    Google Scholar 

  • Lang, P. J., Bradley, M. M. & Cuthbert, B. N. (1990). Emotion, attention and the startle reflex. Psychological Review, 1, 377–395.

    CrossRef  Google Scholar 

  • Lang, W., Lang, M., Heise, B. Deecke, L. & Kornhuber, H. H. (1984). Brain potentials related to voluntary hand tracking, motivation and attention. Human Neurobiology, 3, 235–240.

    PubMed  CAS  Google Scholar 

  • Loveless, N. E. (1979). Event-related slow potentials of the brain as expressions of orienting function. In H. D. Kimmel, E. H van O1st & J. F. Orlebeke (Eds. ) The Orienting Reflex in Humans, pp. 77–100. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers.

    Google Scholar 

  • Loveless, N. E. and Sanford, A. J. (1974). Slow potential correlates of preparatory set. Biological Psychology, 1, 303–314.

    PubMed  CAS  CrossRef  Google Scholar 

  • Low, M. D. and McSherry, J. W. (1968). Further observations of psychological factors involved in CNV genesis. Electroencephalography and Clinical Neurophysiology, 25, 203–207.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kornhuber, H. H. & Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Archiv, 284, 1–17.

    CAS  CrossRef  Google Scholar 

  • Macar, F. and Besson, M. (1985). Contingent negative variation in processes of expectancy, motor preparation and time estimation. Biological Psychology, 21, 293–307.

    PubMed  CAS  CrossRef  Google Scholar 

  • Macar, F. and Besson, M. (1985). Contingent negative variation in processes of expectancy, motor preparation and time estimation. Biological Psychology, 21, 293–307.

    PubMed  CAS  CrossRef  Google Scholar 

  • Macar, F. and Vitton, N., 1979. Contingent negative variation and accuracy of time estimation: a study in cats. Electroencephalography and Clinical Neurophysiology, 47, 213–218.

    PubMed  CAS  CrossRef  Google Scholar 

  • Macar, F. and Vitton, N., 1982. An early resolution of contingent negative variation in time discrimination. Electroencephalography and Clinical Neurophysiology, 54, 426–435.

    PubMed  CAS  CrossRef  Google Scholar 

  • Macar, F., Vidal, F. and Bonnet, M., 1990. Laplacian derivations of CNV in time Programming. In: Brunia, C. H. M., Gaillard A. W. K and Kok, A. (Eds. ), Psychophysiological Brain Research, Volume I, pp. 69–77. Tilburg: Tilburg University Press.

    Google Scholar 

  • McAdam, D. W., Knott, J. R. and Rebert, C. S. (1969). Cortical slow potential changes in man related to inter-stimulus interval. Psychophysiology, 5, 349–358.

    PubMed  CAS  CrossRef  Google Scholar 

  • McCallum, W. C. (1988). How many separate processes constitute the CNV? In: McCallum, W. C., Zappoli, R. and Denoth, F. Cerebral Psychophysiology: Studies in event-related potentials. EEG supplement 38. pp. 192–196. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • McCallum, W. C. (1988). Potentials related to expectancy, preparation and motor activity. In Picton T. W. (Ed. ), EEG Handbook: Vol. 3. Human Event-Related Potentials, pp. 427–533. Amsterdam: Elsevier.

    Google Scholar 

  • McCarthy, G. and Donchin, E. (1978). Brain potentials associated with structural and functional visual matching. Neuropsychologia, 16, 571–585.

    PubMed  CAS  CrossRef  Google Scholar 

  • MacKay, D. M. and Bonnet, M. (1990). CNV, stretch reflex and reaction time correlates of preparation for movement direction and force. Electroencephalography and Clinical Neurophysiology, 56, 696–698.

    CrossRef  Google Scholar 

  • McCallum, W. C. (1988). Potentials related to expectancy, preparation and motor activity. In: Picton, T. W. (Ed. ) Human event-related potentials. EEG handbook (Revised series, Volume 3), pp. 427–534. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Niki, H. and Watanabe, M. (1979). Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Research, 171, 213–224.

    PubMed  CAS  CrossRef  Google Scholar 

  • Niemi, P. and Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89, 133–162.

    CrossRef  Google Scholar 

  • Öhman, A., Flykt, A. and Lundqvist, D. (2000). In: Lane R. D. and Nadel L. (Eds. ) The Cognitive Neuro- science of Emotion. pp. 296–327. New York: Oxford University Press.

    Google Scholar 

  • Passingham, R. E. (1987). Two cortical systems for directing movement. In: Motor areas of the cerebral cortex. Ciba Foundation Symposium, 132, pp. 151–161. Chichester: John Wiley.

    Google Scholar 

  • Passingham, R. E. (1993). The frontal Lobes and Voluntary Action. Oxford: Oxford University Press.

    Google Scholar 

  • Praamstra, P., Meyer, A. S., Cools, A. R., Horstink, M. W. I. M. and Stegeman, D. F. (1996). Movement preparation in Parkinson’s disease: time course and distribution of movement-related potentials in a movement-precuing task. Brain, 119, 1689–1704.

    PubMed  CrossRef  Google Scholar 

  • Pulvermüler, F., Lutzenberger, W, Müller, V., Mohr, B., Dichgans, J. and Birbaumer, N. (1996). P3 and the contingent negative variation in Parkinson’s disease. Electroencephalography and Clinical Neuro-physiology, 98, 456–467.

    CrossRef  Google Scholar 

  • Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A, Cox, R. W. and Binder, J. R. (1997). Distributed neural systems underlying the timing of movements. Neuroimage, 5, 13.

    CrossRef  Google Scholar 

  • Rebert, C. S. (1977). Intracerebral slow potential changes in monkeys during the foreperiod of reaction time. In: Desmedt, J. E (Ed. ) Attention, Voluntary Contraction and Slow Potential Shifts, pp 242–253. Basel: Karger.

    Google Scholar 

  • Requin, J., Brener, J. and Ring, C. (1991). Preparation for action. In: Jennings, J. R. and Coles, M. G. H. (Eds. ) Handbook of Cognitive Psychophysiology. pp. 357–448. Chichester: John Wiley and Sons.

    Google Scholar 

  • Rizolatti, G., Luppino, G. and Matelli, M. (1996). The classic supplementary motor area is formed by two independent areas. In: Lüders, H. O. Advances in Neurology, Vol. 70, Supplementary Sensorimotor Area pp. 45–56. Philadelphia: Lippincott-Raven Publishers.

    Google Scholar 

  • Rockstroh, B., Elbert, T. and Lutzenberger, W. (1989). Slow potentials of the brain and behavior: is there a non-motor CNV? Psychophysiology, 4A, S1.

    Google Scholar 

  • Rohrbaugh, J. & Gaillard, A. W. K. (1983). Sensory and motor aspects of the Contingent Negative Variation. In: Gaillard A. W. K and Ritter W. (Eds. ) Tutorials in Event-related Potentials Research: Endogenous Components, pp. 269–310. Amsterdam: North-Holland.

    CrossRef  Google Scholar 

  • Roland, P. E., Skinhoj, E., Larsen, B and Lassen, N. A. (1980). The role of different cortical areas in the organization of voluntary movements in man. A regional cerebral blood flow study. In Ingvar, D. H. and Lassen, N. A. (Eds. ) Cerebral Function, Metabolism and Circulation. Acta Neurologica Scandinavica, 56, 542–543.

    Google Scholar 

  • Rosenbaum, D. A. (1985). Motor programming: A review and scheduling theory. In: Heuer, H, Kleinbeck, U. and Schmidt, K. H. (Eds. ) Motor Behavior: Programming, control, and acquisition, pp. 1–35. Berlin: Springer Verlag.

    Google Scholar 

  • Rösler, F., Heil, M. and Henninghausen, E. (1995). Distinct cortical activation patterns during long-term memory retrieval of verbal, spatial and color information. Journal of Cognitive Neuroscience, 7, 51–65.

    CrossRef  Google Scholar 

  • Rösler, F., Heil, M. and Henninghausen, E. (1995). Exploring memory functions by means of brain electrical topography: a review. Brain Topography, 7, 301–313.

    PubMed  CrossRef  Google Scholar 

  • Rösler, F., Pechmann, T., Streb, J., Röder and Henninghausen, E. (1998). Parsing sentences in a language with varying word order: word-by-word variations of processing demands are revealed by event-related brain potentials. Journal of Memory and Language, 38, 150–176.

    CrossRef  Google Scholar 

  • Ruchkin, D. S., Sutton, S. Mahaffey, D. & Glaser, J. (1986). Terminal CNV in the absence of motor response. Elec-troencephalography and Clinical Neurophysiology, 63, 445–463.

    CAS  CrossRef  Google Scholar 

  • Ruchkin, D. S., Johnson Jr., R., Canoune, H and Ritter, W. (1992) Distinctions and similarities among working memory processes: an event-related potential study. Cognitive Brain Research, 1, 53–66.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ruchkin, D. S., Canoune H. L., Johnson Jr., R., and Ritter, W. (1995). Working memory and preparation elicit different patterns of slow wave event-related potentials. Psychophysiology, 32, 399–410.

    PubMed  CAS  CrossRef  Google Scholar 

  • Rugg, M. D. (1995). ERP studies of memory. In Rugg, M. D. and Coles, M. G. H. (Eds. ) Electrophysiology of Mind, pp. 132–170. Oxford: Oxford University Press.

    Google Scholar 

  • Sasaki, K., Gemba, H., Hashimoto, S. and Mizuno, N. (1979). Influences of cerebellar hemispherectomy on slow potentials in the motor cortex preceding self-paced hand movements in the monkey. Neuroscience Letters, 15, 23–28.

    PubMed  CAS  CrossRef  Google Scholar 

  • Sasaki, K. and Gemba, H. (1991). Cortical potentials associated with voluntary movements in monkeys. In: Brunia, C. H. M, Mulder G. and Verbaten, M. N. (Eds. ) Event-related Brain Research, pp. 80–96. Amsterdam: Elsevier.

    Google Scholar 

  • Scheirs, J. G. M. and Brunia, C. H. M. (1985). Achilles tendon reflexes and surface EMG activity during anticipation of a significant event and preparation for a voluntary movement. Journal of Motor Behavior, 17, 96–109.

    PubMed  CAS  Google Scholar 

  • Shibasaki, H., Shima, F. and Kuroiwa, Y. (1978). Clinical studies of the movement-related cortical potential (MP) and the relationship between the dentato-rubro-thalamic pathway and the readiness potential (RP). Journal of Neurology, 219, 15–25.

    PubMed  CAS  CrossRef  Google Scholar 

  • Shibasaki, H., Barrett, G., Neshige, R., Hirata, I. & Tomoda, H. (1986). Volitional movement is not preceded by cortical slow negativity in cerebellar dentate lesion in man. Brain Research, 368, 361–365.

    PubMed  CAS  CrossRef  Google Scholar 

  • Simons, R. F. (1988). Event-related slow brain potentials: a perspective from ANS psychophysiology. In: Ackles, P. I. Jennings J. R. and. Coles, M. G. H (Eds. ) Advances in Psychophysiology, Volume 3, pp. 223–267. Greenwich, Connecticut: JAI Press.

    Google Scholar 

  • Simons, R. F., Öhman, A. and Lang, P. J. (1979). Anticipation and response set: cortical, cardiac and electro-dermal correlates. Psychophysiology, 16, 222–233.

    PubMed  CAS  CrossRef  Google Scholar 

  • Tychner, W. H. (1954). Recent studies of simple reaction time. Psychological Bulletin, 51, 128–149.

    CrossRef  Google Scholar 

  • Ulrich, R., Leuthold, H. and Sommer, W. (1998). Motor programming of response force and movement direction. Psychophysiology, 35, 721–728.

    PubMed  CAS  CrossRef  Google Scholar 

  • Vallbo, A. B. (1974). Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiologica Scandinavica, 90, 319–336

    PubMed  CAS  CrossRef  Google Scholar 

  • Van den Bosch, R. J. (1983). Contingent negative variation: components and scalp distribution in psychiatric patients. Biological Psychiatry, 19, 963–972.

    Google Scholar 

  • Van Boxtel, G. and Brunia, C. H. M. (1994). Motor and non-motor aspects of slow brain potentials. Biological Psychology, 38, 35–51.

    Google Scholar 

  • Van Boxtel, G. and Brunia, C. H. M. (1994). Motor and non-motor components of the contingent negative variation. International Journal of Psychophysiology, 17, 269–279.

    PubMed  CrossRef  Google Scholar 

  • Verleger, R., Wascher, E., Wauschkuhn, B., Jaskowski, P., Allouni, B., Trillenberg, P. and Wessel, K. (1999). Consequences of altered cerebellar input for the cortical regulation of motor coordination, as reflected in EEG potentials. Experimental Brain Research, 127, 409–422.

    CAS  CrossRef  Google Scholar 

  • Vidal, F., Bonnet, M. and Macar, F. (1995). Programming of duration of a motor sequence: role of the primary and supplementary motor areas in man. Experimental Brain Research, 106, 339–350.

    CAS  CrossRef  Google Scholar 

  • Wagner, M., Rendtorff, N., Kathmann, N. and Engel, R. R. (1996). CNV, PINV and probe-evoked potentials in schizophrenics. Electroencephalography and Clinical Neurophysiology, 98, 130–143.

    PubMed  CAS  CrossRef  Google Scholar 

  • Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C. & Winter, A. L. 1964. Contingent Negative Variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature, 203, 380–384.

    PubMed  CAS  CrossRef  Google Scholar 

  • Wiesendanger, M., Hummelsheim, H., Bianchetti, M, Chen, D. F., Hyland, B., Maier, V. and Wiesendanger, V. (1987). Input and output organization of the supplementary motor area. In: Motor areas of the cerebral cortex. CIBA Foundation Symposium 132, pp. 40–53. Chichester, John Wiley and Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brunia, C.H.M. (2003). CNV and SPN: Indices of Anticipatory Behavior. In: Jahanshahi, M., Hallett, M. (eds) The Bereitschaftspotential. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0189-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0189-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4958-7

  • Online ISBN: 978-1-4615-0189-3

  • eBook Packages: Springer Book Archive