Movement and ERD/ERS

  • Gert Pfurtscheller
  • Christa Neuper


One characteristic feature of the brain is its ability to generate rhythmic potentials or oscillatory activity. Already in 1949 Jasper and Penfield discovered this fact and discussed the relationship between alpha and beta rhythms and their functioning in relation to underlying neural networks. The frequency of brain oscillations depends both on membrane properties of single neurons and the organization and interconnectivity of networks to which they belong (Lopes da Silva, 1991). Such a network can either comprise a large number of neurons controlled, for example, by thalamo-cortical feedback loops or only a small number of neurons interconnected, for example, by intra-cortical feedback loops. Coherent activity in large neuronal pools can result in high amplitude and low frequency oscillations (e. g. alpha band rhythms), whereas synchrony in localized neuronal pools can be the source of gamma oscillations (Lopes da Silva and Pfortscheller, 1999). The dynamic of such a network can result in phasic changes in the synchrony of cell populations due to externally or internally paced events and lead to characteristic EEG patterns. Two such pattern types are observed, the event-related desynchronization, or ERD, in form of an amplitude attenuation and the event-related synchronization, or ERS, in form of an enhancement of specific frequency components (Pfortscheller and Lopes da Silva, 1999a, Pfortscheller and Lopes da Silva, 1999b).


Motor Imagery Finger Movement Contingent Negative Variation Alpha Band Beta Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arroyo, S., Lesser, R. P., Gordon, B., Uematsu, S., Jackson, D., Webber, R., 1993, Functional significance of the mu rhythm of human cortex: an electrophysiological study with subdural electrodes, Electroencephalogr. clin.Neurophysiol. 87: 76–87.CrossRefGoogle Scholar
  2. Baumgartner, C., Doppelbauer, A., Deecke, L., Barth, D. S., Zeitlhofer, J., Lindinger, G., Sutherling, W. W., 1991, Neuromagnetic investigation of somatotopy of human hand somatosensory cortex, Exp. Brain Res. 87: 641–648.PubMedCrossRefGoogle Scholar
  3. Beisteiner, R., Höllinger, P., Lindinger, G., Lang, W. and Berthoz, A., 1995, Mental representations of movements. Brain potentials associated with imagination of hand movements, Electroenceph. clin. Neurophysiol. 96: 183–192.Google Scholar
  4. Chatrian, G. E., Petersen, M. C., Lazarte, J. A., 1959, The blocking of the rolandic wicket rhythm and some central changes related to movement, Electroenceph. clin. Neurophysiol. 11: 497–510.CrossRefGoogle Scholar
  5. Chen, R., Yassen, Z., Cohen, L. G. and Hallett, M., 1999, The time course of corticospinal excitability in reaction time and self-paced movements, Ann. Neurol. 44: 317–325.CrossRefGoogle Scholar
  6. Colebatch, J. B., Deiber, M. -P., Passingham, R. E., Friston, K. J., Frackowiak, R. S. J., 1991, Regional cerebral blood flow during voluntary arm movements in human subjects, J. Neurophysiol. 65: 1392–1401.PubMedGoogle Scholar
  7. Decety, J., 1996, The neurophysiological basis of motor imagery, Behav. Brain Res. 77: 45–52.Google Scholar
  8. Deecke, L., Grözinger, B., Kornhuber, H. H., 1976, Voluntary finger movement in man: cerebral potentials and theory, Biol. Cybern. 23: 99–119.PubMedCrossRefGoogle Scholar
  9. Deiber, M. -P., Passingham, R. E., Colebatch, J. G., Friston, K. J., Nixon, P. D. and Frackowiak, R. S. J., 1991, Cortical areas and the selection of movement: a study with positron emission tomography, Exp. Brain Res. 84: 393–402.PubMedCrossRefGoogle Scholar
  10. Deiber, M. P., Ibanez, V., Honda, M., Sadato, N., Raman, R. and Hallett, M., 1998, Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography, Neuroimage 7(2): 73–85.PubMedCrossRefGoogle Scholar
  11. Gastaut, H., 1952, Etude electrocorticographique de la reactivite des rhythmes rolandiques, Rev. Neurol. 87: 176–182.PubMedGoogle Scholar
  12. Gastaut, H., Naquet, R. and Gastaut, Y., 1965, A study of the mu rhythm in subjects lacking one or more limbs, Electroenceph. clin. Neurophysiol. 18: 720–721.CrossRefGoogle Scholar
  13. Gerloff, C., Hadley, J., Richard, J. Uenishi, N., Honda, M., Hallett, M., 1998, Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements, Brain 121: 1513–1531.PubMedCrossRefGoogle Scholar
  14. Guieu, J. D., Bourriez, J. L., Derambure, P., Defebvre, L. and Cassim, F., 1999, Temporal and spatial aspects of event-related desynchronization and movement-related cortical potentials, in: Event-Related Desynchronization, Handbook of Electroenceph. and Clin. Neurophysiol., Revised Edition, Vol. 6, Pfurtscheller, G., Lopes da Silva, F. H., eds., Elsevier, Amsterdam, pp. 279–290.Google Scholar
  15. Hallett, M., Fieldman, J., Cohen, L. G., Sadato, N. and Pacual-Leone, A., 1994, Involvement of primary motor cortex in motor imagery and mental practice, Behav. Brain Sci. 17: 210.CrossRefGoogle Scholar
  16. Hjorth, B., 1975, An on-line transformation of EEG scalp potentials into orthogonal source derivations, Electroenceph. clin. Neurophysiol. 39: 526–530.CrossRefGoogle Scholar
  17. Jasper, H. H., Penfield, W., 1949, Electrocorticograms in man: effect of the voluntary movement upon the electrical activity of the precentral gyrus, Arch. Psychiat. Z. Neurol. 183: 163–174.CrossRefGoogle Scholar
  18. Jeannerod, M., 1995, Mental imagery in the motor context, Neuropsychologia 33(11): 1419–1432.PubMedCrossRefGoogle Scholar
  19. Klimesch, W., 1999, Event-related band power changes and memory performance. Event-related desynchronization and related oscillatory phenomena of the brain, in: Handbook of Electroencephalography and Clin. Neurophysiology, Revised Edition, Vol. 6, Pfurtscheller, G., Lopes da Silva, F. H., eds., Elsevier, Amsterdam, pp. 151–178.Google Scholar
  20. Kornhuber, H. H., Deecke, L., 1964, Himpotentialänderungen beim Menschen vor und nach Willkürbewegungen, dargestellt mit Magnetbandspeicherung und Rückwärtsanalyse, Plügers Arch. Ges. Physiol. 281: 52.Google Scholar
  21. Koshino, Y., Niedermeyer, E., 1975, Enhancement of rolandic mu-rhythm by pattern vision, Electroenceph. clin. Neurophysiol. 28: 535–538.Google Scholar
  22. Kreitmann N., Shaw J. C., 1965, Experimental enhancement of alpha activity, Electroenceph. clin. Neurophysiol. 18: 147–155.CrossRefGoogle Scholar
  23. Kuhlman, W. N., 1978, Functional topography of the human mu rhythm, Electroencephalogr. clin. Neurophysiol. 44: 83–93.CrossRefGoogle Scholar
  24. Lang, W., Cheyne, D., Höllinger, P., Gerschlager, W. and Lindinger, G., 1996, Electric and magnetic fields of the brain accompanying internal simulation of movement, Brain Res. Cogn. Brain Res. 3: 125–129.CrossRefGoogle Scholar
  25. Lopes da Silva, F. H., 1991, Neural mechanisms underlying brain waves: from neural membranes to networks, Electroenceph. clin. Neurophysiol. 79: 81–93.CrossRefGoogle Scholar
  26. Lopes da Silva, FH., Pfurtscheller, G., 1999, Basic concepts on EEG synchronization and desynchronization. Event-related desynchronization and related oscillatory phenomena of the brain, in: Handbook of Electroencephalography and Clin. Neurophysiology, Revised Edition, Vol. 6, Pfurtscheller, G., Lopes da Silva, FH., eds., Elsevier, Amsterdam, pp. 3–11.Google Scholar
  27. Neuper, C., Pfurtscheller, G., 1996, Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man, Neurosci. Lett. 216: 17–20.PubMedCrossRefGoogle Scholar
  28. Neuper, C. and Pfurtscheller, G., 1999, Motor imagery and ERD, in: Event-Related Desynchronization. Handbook of Electroenceph. and Clin. Neurophysiol., Revised Edition, Vol. 6, Pfurtscheller, G., Lopes da Silva, F. H., eds., Elsevier, Amsterdam, pp. 303–325.Google Scholar
  29. Neuper, C. and Pfurtscheller, G., 2001, Evidence for distinct beta resonance frequencies related to specific sensorimotor cortical areas. Clinical Neurophysiology, in revision.Google Scholar
  30. Penfield, W., Boldrey, E., 1937, Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation, Brain 60: 389–443.CrossRefGoogle Scholar
  31. Pfurtscheller, G., 1981, Central beta rhythm during sensory motor activities in man, Electroenceph. clin. Neurophysiol. 51: 253–264.CrossRefGoogle Scholar
  32. Pfurtscheller, G., 1992, Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest, Electroenceph. clin. Neurophysiol. 83: 62–69.CrossRefGoogle Scholar
  33. Pfiirtscheller, G., Aranibar, A., 1977, Event-related cortical desynchronization detected by power measurements of scalp EEG, Electroenceph. clin. Neurophysiol. 42: 817–826.CrossRefGoogle Scholar
  34. Pfiirtscheller, G., Berghold, A., 1989, Patterns of cortical activation during planing of voluntary movement, Electroenceph. clin. Neurophysiol. 72: 250–258.CrossRefGoogle Scholar
  35. Pfiirtscheller, G., Neuper, C., 1997, Motor imagery activates primary sensorimotor area in humans, Neurosci. Lett. 239: 65–68.CrossRefGoogle Scholar
  36. Pfiirtscheller, G., Neuper, C., 1994, Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man, Neurosci. Lett. 174: 93–96.CrossRefGoogle Scholar
  37. Pfiirtscheller, G., Stančák, A., Neuper, C., 1996, Post-movement beta synchronization. A correlate of an idling motor area, Electroenceph. clin. Neurophysiol. 98: 281–293.CrossRefGoogle Scholar
  38. Pfiirtscheller, G., Stančák, A., Edlinger, G., 1997, On the existance of different types of central beta rhythms below 30 Hz, Electroenceph. clin. Neurophysiol. 102: 316–325.CrossRefGoogle Scholar
  39. Pfiirtscheller, G., Zalaudek, K., Neuper, C., 1998, Event-related beta synchronization after wrist, finger and thumb movement, Electroenceph. clin. Neurophysiol. 109: 154–160.Google Scholar
  40. Pfiirtscheller, G. and Lopes da Silva, F. H, 1999a, Event-Related Desynchronization. Handbook of Electroenceph. and Clin. Neurophysiol., Revised Edition, Vol. 6. Elsevier, Amsterdam.Google Scholar
  41. Pfiirtscheller, G. and Lopes da Silva, F. H., 1999b, Event-related EEG/MEG synchronization and desynchronization: Basic principles, Clin. Neurophysiol. 110: 1842–1857.CrossRefGoogle Scholar
  42. Pfiirtscheller, G., Pichler-Zalaudek, K., Neuper, C., 1999, ERD and ERS in voluntary movement of different limbs, in: Handbook of Electroencephalography and Clin. Neurophysiology, Revised Edition, Vol. 6, Pfurtscheller, G., Lopes da Silva, F. H., eds., Elsevier, Amsterdam, pp. 245–268.Google Scholar
  43. Pfurtscheller, G., Neuper, C., Krausz, G., 2000a, Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement, Clin. Neurophysiol. 111: 1873–1879.PubMedCrossRefGoogle Scholar
  44. Pfurtscheller, G., Neuper, C., Pichler-Zalaudek, K., Edlinger, G. and Lopes da Silva, F. H., 2000b, Do brain oscillations of different frequencies indicate interaction between cortical areas in humans, Neurosci. Lett. 286: 66–68.PubMedCrossRefGoogle Scholar
  45. Roland, P. E., Larsen, B., Lassen, N. A., Skinhoj, E., 1980, Supplementary motor area and other cortical areas in organization of voluntary movements in man, J. Neurophysiol. 43: 118–136.PubMedGoogle Scholar
  46. Salenius, S., Schnitzler, A., Salmelin, R., Jousmäki, V. and Hari, R., 1997, Modulation of human cortical rolandic rhythms during natural sensorimotor tasks, Neuroimage 5: 221–228.PubMedCrossRefGoogle Scholar
  47. Salmelin, R., Hämäläinen, M., Kajola, M., Hari, R., 1995, Functional segregation of movement-related rhythmic activity in the human brain, Neuroimage 2: 237–243.PubMedCrossRefGoogle Scholar
  48. Singer, W., 1993, Synchronization of cortical activity and its putative role in information processing and learning, Ann. Rev. Physiol. 55: 349–374.CrossRefGoogle Scholar
  49. Shibasaki, H., Barrett, G., Haliday, E., Halliday, A. M., 1981, Cortical potentials associated with voluntary foot movements in man, Electroenceph. clin. Neurophysiol. 52: 507–516.CrossRefGoogle Scholar
  50. Stephan, K. M., Frackowiak, R. S. J., 1996, Motor imagery - anatomical representation and electrophysiological characteristics, Neurochem. Res. 21(9): 1105–1116.PubMedCrossRefGoogle Scholar
  51. Suffczynski, P., Pijn, J. M. P., Pfurtscheller, G., Lopes da Silva, F. H., 1999, Event-related dynamics of alpha band rhythms: a neuronal network model of focal ERD/surround ERS. Event-related desynchronization and related oscillatory phenomena of the brain, in: Handbook of Electroencephalography and Clin. Neurophysiology, Revised Edition, Vol. 6, Pfurtscheller, G., Lopes da Silva, F. H., eds., Elsevier, Amsterdam, pp. 67–85.Google Scholar
  52. Tanji, J., 1996, New concepts of the supplementary motor area, Curr. Opin. Neurobiol. 6: 782–787.CrossRefGoogle Scholar
  53. Toro, C., Deuschl, G., Thatcher, R., Sato, S., Kufta, C., Hallett, M., 1994, Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG, Electroenceph. clin. Neurophysiol. 93: 380–389.CrossRefGoogle Scholar
  54. Van Burik, M., Edlinger, G., Pfurtscheller, G., 1999, Spatial Mapping of ERD/ERS, in: Event-Related Desynchronization. Handbook of Electroenceph. and Clin. Neurophysiol, Revised Edition, Vol. 6, Pfurtscheller, G., Lopes da Silva, F. H., eds., Elsevier, Amsterdam, pp. 107–118.Google Scholar
  55. Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., Winter, A. L., 1964, Contingent negative variation: An electrical sign of sensori-motor association and expectancy in the human brain, Nature 203: 380–384.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Gert Pfurtscheller
    • 1
  • Christa Neuper
    • 2
  1. 1.Department of Medical InformaticsInstitute of Biomedical EngineeringAustria
  2. 2.Ludwig Boltzmann Institute of Medical Informatics and NeuroinformaticsUniversity of TechnologyGrazAustria

Personalised recommendations