Skip to main content

Immunocytochemical Characterisation of Catecholaminergic Neurons in the Rat Striatum Following Dopamine Depleting Lesions

  • Chapter
The Basal Ganglia VI

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 54))

  • 247 Accesses

Abstract

In rats that receive unilateral 6-hydroxydopamine lesions, neurons immunoreactive for catecholaminergic markers appear in the striatum. If these neurons contribute to the brain’s ability to convert L-DOPA to dopamine in a therapeutic context then they have obvious relevance for the treatment of Parkinson’s disease. We show that the tyrosine hydroxylase immunoreactive neurons found in the dopamine-depleted striatum differ in size, morphology and location from those that are immunopositive for aromatic L-amino acid decarboxylase or dopamine. The tyrosine hydroxylase immunoreactive neurons, which lie ventrally along a rostrocaudal continuum from the core of nucleus accumbens to the fundus of the striatum, have the morphological characteristics of projection cells. Meanwhile, aromatic L-amino acid decarboxylase or dopamine-immunoreactive neurons, found in subcallosal positions in the dorsomedial caudate-putamen of both the dopamine-depleted and intact hemispheres, have the features of local circuit neurons. These catecholaminergic enzymes may be induced as a pharmacological response to the almost complete loss of dopamine from the striatum, or their appearance may reflect a general compromise in neuronal function. We present preliminary evidence for neuronal loss from the most severely depleted regions of the striatal complex suggesting that certain catecholaminergic markers may be found in neurons about to die.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie, E.D., and Jacobs, B.L. 1987, Single unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II. Adaptation to chronically presented stressful stimuli.J. Neurosci.7:2844.

    PubMed  CAS  Google Scholar 

  2. Bennett, B.D. and Bolam, J.P. 1993, Characterization of calretinin-immunoreactive structures in the striatum of the rat.Brain Res.609:137.

    Article  PubMed  CAS  Google Scholar 

  3. Berger, B., Vemey, C., Gaspar, P. and Febvret, A. 1985, Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development.Dell. Brain Res.23:141.

    Article  CAS  Google Scholar 

  4. Betarbet, R., Turner, R., Chockkan, V., Delong M.R., Allers K.A., Walters J., Levey A.I. and Greenamyre, F.T. 1997, Dopaminergic neurons intrinsic to the primate striatum.J. Neurosci.17:6761.

    PubMed  CAS  Google Scholar 

  5. Bolam, J.P., Clarke, D.J., Smith, A.D. and Somogyi, P. 1983, A type of aspiny neuron in the rat neostriatum accumulates [3H)-gamma-aminobutyric acid: Combination of Golgi-staining, autoradiography, and electron microscopy.J. Comp. Neurol.213:121.

    Article  PubMed  CAS  Google Scholar 

  6. Bolam, J.P., Powell, J.F., Wu, J.-Y. and Smith, A.D. 1985, Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: a correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry.J. Comp. Neurol.237:1.

    Article  PubMed  CAS  Google Scholar 

  7. Broening, H.W., Cunfeng, P.U. and Vorhees, C.V. 1997, Methamphetamine selectively damages dopaminergic innervation to the nucleus accumbens core while sparing the shell.Synapse27:153.

    Article  PubMed  CAS  Google Scholar 

  8. Chronister, R.B., Sikes, R.W., Trow, T.W. and De France, J.F. 1981, The organization of nucleus accumbens, in:The Neurobiology of the Nucleus AccumbensR.B. Chronister, R.B. and J.F. De France, eds., The Haer Institute for electrophysiological research, Brunswick, Maine, pp. 147–172.

    Google Scholar 

  9. Cooper, P.H., Novin, D. and Butcher, L.L. 1982, Intra-cerebral 6-hydroxydopamine produced extensive damage to the blood-brain barrier in rats.Neurosci. Lett.30:13.

    Article  PubMed  CAS  Google Scholar 

  10. De Souza, I.A.J. and Meredith, G. 1999, NMDA receptor blockade attenuates the haloperidol induction of Fos immunoreactivity in the dorsal but not the ventral striatum.Synapsein press.

    Google Scholar 

  11. Deutch, A.Y. and Cameron, D.S. 1992, Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell.Neuroscience46:49.

    Article  PubMed  CAS  Google Scholar 

  12. Du, X. and Iacovitti, L. 1995, Synergy between growth factors and transmitters required for catecholamine differentiation in brain neurons.J. Neurosci.15:5420.

    PubMed  CAS  Google Scholar 

  13. Du X., Stull, N.D. and Iacovitti, L. 1994, Novel expression of the tyrosine hydroxylase gene requires both acidic fibroblast growth factor and an activator.J. Neurosci.14:7688.

    PubMed  CAS  Google Scholar 

  14. Freund, T.F., Powell, J.F. and Smith, A.D. 1984, Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons with particular reference to dendritic spines.Neuroscience13:1189.

    Article  PubMed  CAS  Google Scholar 

  15. Gerfen, C.R., Herkenham, M. & Thibault, J. 1987, The neostriatal mosaic: 11. Patch-and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems.J. Neurosci.7:3915.

    PubMed  CAS  Google Scholar 

  16. Hotchkiss, A.J. and Gibb, J.W. 1980, Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain.J. Pharmacol. Exp. Ther.214:257.

    PubMed  CAS  Google Scholar 

  17. Hussain, Z., Johnson, L.R. and Totterdell, S. 1996, A light and electron microscopic study of NADPHdiaphorase-, calretinin-and parvalbumin-containing neurons in the rat nucleus accumbens.J. Chem. Neuroanat.10:19.

    Article  PubMed  CAS  Google Scholar 

  18. Iacovitti L., Job T.H., Park I.H. and Bunge R.P. 1987, Expression of tyrosine hydroxylase in neurons of cultured cerebral cortex: evidence for phenotypic plasticity in neurons of the CNS.J. Neurosci.7:1264.

    PubMed  CAS  Google Scholar 

  19. Ingham, C.A., Hood, S.H. and Arbuthnott, G.W. 1989 Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age.Brain Res.503:334.

    Article  PubMed  CAS  Google Scholar 

  20. Jaeger, C.B., Teitelman, G., Joh, T.H., Albert, V.R., Park, D.H. and Reis, D.J. 1983 Some neurons of the rat central nervous system contain aromatic L-amino acid decarboxylase but not monoamines.Science219:1233.

    Article  PubMed  CAS  Google Scholar 

  21. Jonsson, G. 1980, Chemical neurotoxins as denervation tools in neurobiology.Ann. Rev. Neurosci.3:169.

    Article  PubMed  CAS  Google Scholar 

  22. Kalsbeek, A., Voorn, P. and Buijs, R.M. 1991, Development of dopamine-containing systems in the CNS, in:Handbook of Chemical Neuroanatomy: Vol 10: Ontogeny of Transmitters and Peptides in the CNS.A. Bjorklund, T. Hokfelt and M. Tohyama, eds., Elsevier, Amsterdam, pp. 63–112.

    Google Scholar 

  23. Kish, S.J., Shannak, K. and Homykiewicz, O. 1988, Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease: Pathophysiologic and clinical implications.New Engl. J. Med.318:876.

    Article  PubMed  CAS  Google Scholar 

  24. Kitahama, K., Denoyer, M., Raynaud, B., Borri-Voltattorni, C., Weber, M. and Jouvet, M. 1988, Immunohistochemistry of aromatic L-amino acid decarboxylase in the cat forebrain.J. Comp. Neurol.270:337.

    Article  PubMed  CAS  Google Scholar 

  25. Labandeira-Garcia, J.L., Rozas, G., Lopez-Martin, E., Liste, I. and Guerra, M.J. 1996 Time course of striatal changes induced by 6-hydroxydopamine lesion of the nigrostriatal pathway, as studied by combined evaluation of rotational behaviour and striatal Fos expression.Exp. Brain Res.108:69.

    Article  PubMed  CAS  Google Scholar 

  26. Marti. M.J., James, C.J., Oo, T.F., Kelly, W.J. and Burke, R.E. 1997, Early developmental destruction of terminals in the striatal target induces apoptosis in dopamine neurons of the substantia nigra.J. Neurosci.17:2030.

    PubMed  CAS  Google Scholar 

  27. Mena, M.A., Davila, V., Bogaluvsky, J. and Sulzer, D. 1998 A synergistic neurotrophic response to 1dihydroxyphenylalanine and nerve growth factor.Mol. Pharmacol.54:678.

    PubMed  CAS  Google Scholar 

  28. Meredith, G.E., Agolia, R., Arts, M.P.M., Groenewegen, H.J. and Zahm, D.S. 1992, Morphological differences between projection neurons of the core and shell in the nucleus accumbens of the rat.Neuroscience50:149.

    Article  PubMed  CAS  Google Scholar 

  29. Meredith, G.E., Wouterlood, F.G and Pattiselanno, A. 1990, Hippocampal fibers make synaptic contacts with glutamate decarboxylase-immunoreactive neurons in the rat nucleus accumbens.Brain Res.513:329.

    Article  PubMed  CAS  Google Scholar 

  30. Meredith, GE., Ypma, P. and D.S. Zahm 1995 Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens.J. Neurosci.15:3808.

    PubMed  CAS  Google Scholar 

  31. Mugnaini, E. and Oertel, W.H. 1985, An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry, in:Handbook of Chemical Neuroanatomy Vol. 4 GABA and neuropeptides in theCNS, A. Bjorklund and T. Hokfelt, eds., Elsevier, Amsterdam, pp. 75–105.

    Google Scholar 

  32. Mura, A., Jackson, D., Manley, M., Young, S. and Groves, P. 1995, Aromatic L-amino acid decarboxylase immunoreactive cells in the rat striatum: A possible site for the conversion of exogenous L-DOPA to dopamine.Brain Res.704:51.

    Article  PubMed  CAS  Google Scholar 

  33. Nagatsu, I., Komori, K., Takeuchi, T., Sakai, M., Yamada, K. and Karasawa, N. 1990, Transient tyrosine hydroxylase-immunoreactive neurons in the region of the anterior olfactory nucleus of pre-and postnatal mice do not contain dopamine.Brain Res.511:55.

    Article  PubMed  CAS  Google Scholar 

  34. O’Donnell, P. and Grace, A. 1993, Dopaminergic modulation of dye coupling between neurons in the core and shell regions of the nucleus accumbens.J. Neurosci.13:257.

    Google Scholar 

  35. Oppenheimer, R.W. 1991, Cell death during development of the nervous system.Ann. Rev. Neurosci.14:453.

    Article  Google Scholar 

  36. Paxinos, G. and Watson, C. 1986The Rat Brain in Stereotaxic CoordinatesAcademic Press, Sydney.

    Google Scholar 

  37. Pickel, VM., Johnson, E., Carson, M. & Chan, J. 1992, Ultrastructure of spared dopamine terminals in caudate-putamen nuclei of adult rats neonatally treated with intranigral 6-hydroxydopamine.Dey. Brain Res.70:75.

    Article  CAS  Google Scholar 

  38. Simantov, R., Blinder, E., Ratovitski, T., Tauber, M., Gabbay, M. and Porat, S. 1996, Dopamine-induced apoptosis in human neuronal cells: Inhibition by nuclei acids antisense to the dopamine transporter.Neuroscience74:39.

    Article  PubMed  CAS  Google Scholar 

  39. Somogyi, P. and Smith, A.D. 1979 Projection of neostriatal spiny neurons to the substantia nigra. Application of combined Golgi-staining and horseradish peroxidase transport procedure at both light and electron microscopic levels.Brain Res.178:3.

    Article  PubMed  CAS  Google Scholar 

  40. Swanson, L.W. 1982 The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat.Brain Res. Bull.9:321.

    Article  PubMed  CAS  Google Scholar 

  41. Tashiro, Y., Kaneko, T., Sugimoto, T., Nagatsu, 1., Kikuchi, Hand Mizuno, N. 1989a, Striatal neurons with aromatic L-amino acid decarboxylase-like immunoreactivity in the rat.Neurosci. Letts.100:29.

    CAS  Google Scholar 

  42. Tashiro, Y., Sugimoto, T., Hattori, T., Vemura, Y., Nagatsu, I., Kikuchi, H. and Mizuno, N. 1989b, Tyrosine hydroxylase-like immunoreactive neurons in the striatum of the rat.Neurosci. Letts.97:6.

    Article  CAS  Google Scholar 

  43. Tashiro, Y., Kaneko, T., Nagatsu, I., Kikuchi, H. and Mizuno, N. 1990, Increase of tyrosine hydroxylase-like immunoreactive neurons in the nucleus accumbens and the olfactory bulb in the rat with the lesion in the ventral tegmental area of the midbrain.Brain Res.531:159.

    Article  PubMed  CAS  Google Scholar 

  44. Totterdell, S. and Smith, A.D. 1989, Convergence of hippocampal and dopaminergic input onto identified neurons in the nucleus accumbens of the rat. J.Chem. Neuroanat.2:285.

    PubMed  CAS  Google Scholar 

  45. Ungerstedt, U. 1968, 6-hydroxydopamine-induced degeneration of central monoamine neurons.Eur. J. Pharmacol.5:107.

    Article  PubMed  CAS  Google Scholar 

  46. Verney, C., Gaspar, P., Febvret, A. and Berger, B. 1988 Transient expression of tyrosine hydroxylase-like immunoreactive neurons contain somatostatin and substance P in the developing amygdala and bed nucleus of the striata terminalis of the rat.Dey. Brain Res.42:45.

    Article  CAS  Google Scholar 

  47. Vincent, S.R. and Hope, B.T. 1990 Tyrosine hydroxylase containing neurons lacking aromatic amino acid decarboxylase in the hamster brain.J. Comp. Neurol.295:290.

    Article  PubMed  CAS  Google Scholar 

  48. Voorn, P., Jorritsma-Byham, B., Van Dijk, C. and Buijs, R.M. 1986, The dopaminergic innervation of the ventral striatum in the rat: a light-and electron-microscopical study with antibodies against dopamine.J. Comp. Neurol.251:84.

    Article  PubMed  CAS  Google Scholar 

  49. Zahm, D.S. 1991, Compartments in rat dorsal and ventral striatum revealed following injection of 6hydroxydopamine into the ventral mesencephalon.Brain Res.552:164.

    Article  PubMed  CAS  Google Scholar 

  50. Zahm, D.S. and Brog, J.S. 1992 On the significance of subterritories in the “accumbens” part of the rat ventral striatum.Neuroscience50:751.

    Article  PubMed  CAS  Google Scholar 

  51. Zahm, D.S. & Heimer, L. 1993, Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell.J. Comp. Neurol.327:220.

    Article  PubMed  CAS  Google Scholar 

  52. Zigmond, M.J., Abercrombie, E., Berger, T.W., Grace, A.A. and Stricker, E.M. 1990, Compensations after lesions of central dopaminergic neurons: Some clinical and basic implications.Trends Neurosci.13:290.

    Article  PubMed  CAS  Google Scholar 

  53. Zigmond, M.J., Acheson, A.L., Stachowiak, M.K. and Stricker, E.M. 1984, Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical parkinsonism.Arch. Neurol.4:856.

    Article  Google Scholar 

  54. Zigmond, R.E., Schon, F. and Iversen, L.L. 1974, Increased tyrosine hydroxylase activity in the locus coeruleus of rat brain stem after reserpine treatment and cold stress.Brain Res.70:547.

    Article  PubMed  CAS  Google Scholar 

  55. Zigmond, R.E., Schwarzschild, M.A. and Rittenhouse, A.R. 1989, Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation.Ann Rev. Neurosci.12:415.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Totterdell, S., Meredith, G.E. (2002). Immunocytochemical Characterisation of Catecholaminergic Neurons in the Rat Striatum Following Dopamine Depleting Lesions. In: Graybiel, A.M., Delong, M.R., Kitai, S.T. (eds) The Basal Ganglia VI. Advances in Behavioral Biology, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0179-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0179-4_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4955-6

  • Online ISBN: 978-1-4615-0179-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics