Advertisement

Morphological and Electrophysiological Studies of Substantia Nigra, Tegmental Pedunculopontine Nucleus, and Subthalamus in Organotypic Co-Culture

  • S. T. Kitai
  • N. Ichinohe
  • J. Rohrbacher
  • B. Teng
Part of the Advances in Behavioral Biology book series (ABBI, volume 54)

Abstract

Recently we incorporated an organotypic culture method in our basal ganglia research. In our preparation, we were successful in co-culturing more than two structures of interest1–3. This in vitro organotypic preparation combines the advantage of in vitro slice preparation for ease of intracellular sharp or patch recording under improved controlled experimental chemical environment with the in vivo preparation in which the structure of interest is not isolated from the source of their major afferents. In this report, we would like to present a triple culture preparation consisting of the tegmental pedunculopontine nucleus (PPN), the subthalamic nucleus (STN) and the substantia nigra (SN).

Keywords

Substantia Nigra Cholinergic Neuron Subthalamic Nucleus Organotypic Culture Slice Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plenz, D. & Kitai, S. T. Organotypic cortex -striatum-mesencephalon cultures: the nigrostriatal pathway.Neurosci. Ltr.209, 177–180 (1996b).CrossRefGoogle Scholar
  2. 2.
    Plenz, D. & Kitai, S. T. Regulation of the nigrostriatal pathway by metabotropic glutamate receptors during development.J. Neurosci.18, 4133–4144 (1998b).PubMedGoogle Scholar
  3. 3.
    Plenz, D., Herrera-Marschitz, M. & Kitai, S. T. Morphological organization of the globus pallidus -subthalamic nucleus system studied in organotypic cultures.J. Comp. Neurol.397, 437–457 (1998c).PubMedCrossRefGoogle Scholar
  4. 4.
    Beckstead, R. M., Domesick, V. B. & Nauta, W. J. Efferent connections of the substantia nigra and ventral tegmental area in therat. Brain Res.175, 191–217 (1979A).PubMedCrossRefGoogle Scholar
  5. 5.
    Bentivoglio, M., Van der Kooy, D. & Kuypers, H. G The organization of the efferent projections of the substantia nigra in the rat. A retrograde fluorescent double labeling study.Brain Res.174, 1–17 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    Faull, R. L. & Mehler, W. R. The cells of origin of nigrotectal, nigrothalamic and nigrostriatal projections in the rat.Neurosci.3, 989–1002 (1978).CrossRefGoogle Scholar
  7. 7.
    Canteras, N. S., Shammah-Lagnado, S. J. & Ricardo, J. A. Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat.Brain Res.513, 43–59 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    Hassani, 0. -K., Frangois, Yelnik, J. & Feger, J. Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat.Brain Res.749, 88–94 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    Grofova, I. & Zhou, M. Nigral innervation of cholinergic and glutamatergic cells in the rat mesopontine tegmentum: light and electron microscopic anterograde tracing and immunohistochemical studies.J. Comp. Neurol.395, 359–379 (1998).PubMedCrossRefGoogle Scholar
  10. l0.
    Beninato, M. & Spencer, R. F. The cholinergic innervation of the rat substantia nigra; a light and electron microscopic immunohistochemical study.Exp. Brain Res.72, 178–184 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    Clarke, P. B., Hommer, D. W., Pert, A. & Skirboll, L. R. Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence.Neurosci.23, 1011–1019 (1987).CrossRefGoogle Scholar
  12. 12.
    Futami, T., Takakusaki, K. & Kitai, S. T. Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopanune neurons in the substantia nigra pars compacta.Neurosci. Res.21, 331–342 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    Gould, E., Woolf, N. J. & Butcher, L. L. Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei.Neurosci.28, 611–623 (1989).CrossRefGoogle Scholar
  14. 14.
    Kita, H. & Kitai, S. T. Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA L method.J. Comp. Neurol.260, 435–452 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    Naito, A. & Kita, H. The cortico-nigral projection in the rat: an anterograde tracing study with biotinylated dextran amine.Brain Res.637, 317–322 (1994).PubMedCrossRefGoogle Scholar
  16. I6.
    Takakusaki, K., Shiroyama, T., Yamamoto, T. & Kitai, S. T. Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling.J. Comp. Neurol.371, 345–361 (1996).PubMedCrossRefGoogle Scholar
  17. 17.
    Bolam, J. P. & Smith, Y. The GABA and substance P input to dopaminergic neurons in the substantia nigra of the rat.Brain Res.529, 57–78 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    Oertel, W. H., Tappaz, M. L., Berod, A. & Mugnaini, E. Two-color immunohistochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta.Brain Res. Bull.9, 463–474 (1982)PubMedCrossRefGoogle Scholar
  19. 19.
    Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R. & Roberts, E. Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra.Brain Res.116, 287–298 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    Deniau, J. M., Kitai, S. T., Donoghue, J. P. & Grofova, I. Neuronal interactions in the substantia nigra pars reticulata through axon collaterals of the projection neurons. An electrophysiological and morphological study.Expl. Brain Res.47, 105–113 (1982).CrossRefGoogle Scholar
  21. 21.
    Nakanishi, H., Kita, H. & Kitai, S. T. Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation.Brain Res.437, 45–55 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    Scamati, E., Campana, E. & Pacitti, C. Pedunculopontine-evoked excitation of substantia nigra neurons in therat. Brain Res.304, 351–361 (1984).CrossRefGoogle Scholar
  23. 23.
    Deniau, J. M., Feger, J. & LeGuyader, C. Striatal evoked inhibition of identified nigro thalamic neurons.Brain Res.104, 152–156 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    Smith, Y., Bolam, J. P. & von Krosigk, M. Topographical and synaptic organization of the GABA-containing pallidosubthalamic projection in the rat.Eur. J. Neurosci.2, 500–511 (1990A).PubMedCrossRefGoogle Scholar
  25. 25.
    Bunney, B. S., Walters, J. W., Roth, R. H. & Aghajanian, G. K. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity.J. Pharmac. Exp. Ther.185, 560–571 (1973).Google Scholar
  26. 26.
    Grace, A. A. & Bunney, B. S. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-1. Identification and characterization.Neurosci. 10301–315 (1983).CrossRefGoogle Scholar
  27. 27.
    Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: Single spike firing.J. Neurosci.4, 2866–2876 (1984).PubMedGoogle Scholar
  28. 28.
    Grace, A. A. & Onn, S. P. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro.J. Neurosci.9, 3463–3481 (1989).PubMedGoogle Scholar
  29. 29.
    Harris, N. C., Webb, C. & Greenfield, S. A. A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents.Neurosci.31, 355–362 (1989).CrossRefGoogle Scholar
  30. 30.
    Kang, Y. & Kitai, S. T. Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra.Neurosci. Res.18, 195–207 (1993a).PubMedCrossRefGoogle Scholar
  31. 31.
    Lacey, M. G., Mercuri, N. B. & North, R. A. Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids.J. Neurosci.9, 1233–1241 (1989).PubMedGoogle Scholar
  32. 32.
    Lacey, M. G, Calabresi, P. & North, R. A. Muscarine depolarizes rat substantia nigra zona compacta and ventral tegmental neurons in vitro through M1-like receptors.J. Pharmac. Exp. Ther.253, 395–400 (1990).Google Scholar
  33. 33.
    Matsuda, Y., Fujimura, K. & Yoshida, S. Two types of neurons in the substantia nigra pars compacta studied in a slice preparation.Neurosci. Res.5, 172–179 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    Richards, C. D., Shiroyama, T. & Kitai, S. T. Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of therat. Neurosci.80, 545–557 (1997).CrossRefGoogle Scholar
  35. 35.
    Shepard, P. D. & Bunney, B. S. Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive CA2+-activated K+ conductance.Exp.Brain Res.86, 141–150 (1991).PubMedCrossRefGoogle Scholar
  36. 36.
    Wilson, C. J., Young, S. J. & Groves, P. M. Statistical properties of neuronal spike trains in the substantia nigra: cell types and their interactions.Brain Res.136, 243–260 (1977).PubMedCrossRefGoogle Scholar
  37. 37.
    Yung, W. H., Hausser, M. A. & Jack, J. J. B. Electrophysiology of dopaminergic and nondopaminergic neurons of the guinea pig substantia nigra pars compacta in vitro. JPhysiol.436, 643–667 (1991).PubMedGoogle Scholar
  38. 38.
    Rye, D. B., Saper, C. B., Lee, H. J. & Wainer, B. H. Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, Cytochemistry and some extrapryamidal connections of the mesopontine tegmentum.J. Comp. Neurol.259, 483–528 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    Spann, B. M. & Grofova, I. Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat.J. Comp. Neurol.283, 13–27 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    Albin, R. L., Aldridge, J. W., Young, A. B. & Gilman, S. Feline subthalamic nucleus neurons contain glutamate-like but not GABA-like or glycine-like immunoreactivity.Brain Res.491, 185–188 (1989).PubMedCrossRefGoogle Scholar
  41. 41.
    Kitai, S. T. & Kita, H.Anatomy and physiology of the subtlalamic nucleus: a driving force of the basal ganglia(eds. Carpenter, M. B. & Jarayaman, A.) (Plenum, New York, 1987).Google Scholar
  42. 42.
    Smith, Y. & Parent, A. Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity.Brain Res.453, 353–356 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    Bevan, M. D., Francis, C. M. & Bolam, J. P. The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals.J. Comp. Neurol.361, 491–511 (1995B).PubMedCrossRefGoogle Scholar
  44. 44.
    Kitai, S. T. & Deniau, J. M. Cortical inputs to the subthalamus: Intracellular analysis.Brain Res.214, 411–415 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    Lee, H. J., Rye, D. B., Hallanger, A. E., Levey, A. I. & Wainer, B. H. Cholinergic vs noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei.J. Comp. Neurol.275, 469–492 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    Bevan, M. D. & Bolam, J. P. Cholinergic, GABAergic and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat.J. Neurosci.15, 7105–7120 (1995A).PubMedGoogle Scholar
  47. 47.
    Woolf, N. J. & Butcher, L. L. Cholinergic systems in the rat brain:III.Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain.Brain Res. Bull.16, 603–637. (1986).PubMedCrossRefGoogle Scholar
  48. 48.
    Kita, H., Chang, H. T. & Kitai, S. T. Pallidal inputs to subthalamus: intracellular analysis.Brain Res.264, 255–265 (1983a).PubMedCrossRefGoogle Scholar
  49. 49.
    Chang, H. T., Kita, H. & Kitai, S. T. The ultrastructural morphology of the subthalamonigral axon terminals intracellularly labeled with horseradish peroxidase.Brain Res.299, 182–185 (1984).PubMedCrossRefGoogle Scholar
  50. 50.
    Deniau, J. M., Hammond, C., Chevalier, G. & Feger, J. Evidence for branched subthalamic nucleus projections to substantia nigra, entopeduncular nucleus and globus pallidus.Neurosci.Lett. 9, 117–121 (1978).Google Scholar
  51. 51.
    Jackson, A. & Crossman, A. R. Subthalamic projection to nucleus tegmenti pedunculopontinus in the rat.Neurosci. Lett.22, 17–22 (1981).PubMedCrossRefGoogle Scholar
  52. 52.
    Kita, H., Chang, H. T. & Kitai, S. T. The morphology of intracellularly labeled rat subthalamic neurons: A light microscopic analysis.J. Comp. Neurol.215, 245–257 (1983b).PubMedCrossRefGoogle Scholar
  53. 53.
    Van der Kooy, D. & Hattori, T. Single subthalamic nucleus neurons project to both the globus pallidus and substantia nigra in rat.J. Comp. Neurol.192, 751–768 (1980).CrossRefGoogle Scholar
  54. 54.
    Lokwan, S. J., Overton, P. G, Berry, M. S. & Clark, D. Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons.Neurosci.92, 245–254 (1999).CrossRefGoogle Scholar
  55. 55.
    Sorenson, E. M., Shiroyama, T. & Kitai, S. T. Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat.Neurosci.87, 659–673 (1998).CrossRefGoogle Scholar
  56. 56.
    Hammond, C., Deniau, J. M., Rizk, A. & Feger, J. Electrophysiological demonstration of an excitatory substhalamonigral pathway in the rat.Brain Res.151, 235–244 (1978).PubMedCrossRefGoogle Scholar
  57. 57.
    Ichinohe, N., Teng, B. & Kitai, S. T. Morphological studies of tegmental pedunculopontine nucleus, substantia nigra and subthalamic nucleus, and their interrelationship among these structures in organotypic cultures.In Press Anat. Embryo!.(1999).Google Scholar
  58. 58.
    Vincent, S. R., Satoh, K., Armstrong, D. M. & Fibiger, H. C. ADPH-diaphorase: a selective histochemical marker for the cholinergic neurons of the pontine reticular formation.N Neurosci. Lett.43, 31–36 (1983).CrossRefGoogle Scholar
  59. 59.
    Juraska, J. M., Wilson, C. J. & Groves, P. M. The substantia nigra of the rat: a Golgi study.J. Comp Neurol.172, 585–600 (1977).PubMedCrossRefGoogle Scholar
  60. 60.
    Jaeger, C., Gonzalo-Ruiz, A. &., L. R. Organotypic slice cultures of dopaminergic neurons of substantia nigra.Brain ResBull. 22, 981–991 (1989).Google Scholar
  61. 61.
    Ostergaard, K., Schou, J. P. & Zimmer, J. Rat ventral mesencephalon grown as organotypic slice cultures and co-cultured with striatum, hippocampus, and cerebellum.Expl. Brain Res.82, 547–565 (1990).CrossRefGoogle Scholar
  62. 62.
    Spann, B. M. & Grofova, I. Cholinergic and non-cholinergic neurons in the rat pedunculopontine tegmental nucleus.Anat. Embryol.186, 215–227 (1992).PubMedCrossRefGoogle Scholar
  63. 63.
    Jones, B. E.Reticular formation. Cytoarchitecture transmitters and projections.(ed. Paxinos, G.) (Academic Press Australia, New South Wales, 1994A). Google Scholar
  64. 64.
    Lavoie, B. & Parent, A. Pedunculopontine nucleus in the squirrel monkey: Distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons.J. Comp. Neurol.344, 190–209 (1994).PubMedCrossRefGoogle Scholar
  65. 65.
    Ford, B., Holmes, C. J., Mainville, L. & Jones, B. E. GABAergic neurons in the rat pontomesencephalic tegmentum: Codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus.J. Comp. Neurol.363, 177–196 (1995).PubMedCrossRefGoogle Scholar
  66. 66.
    Clements, J. R. & Grant, S. J. Glutamate-like immunoreactivity in neurons of the laterodorsal tegmental and pedunculopontine nuclei in the rat.Neurosci. Ltrs.120, 70–73 (1990).CrossRefGoogle Scholar
  67. 67.
    Celio, M. R. Calbindin D-28K and parvalbumin in the rat nervous system.Neurosci.35, 375–475 (1990).CrossRefGoogle Scholar
  68. 68.
    Rajakumar, N., Elisevich, K. & Flumerfelt, B. A. Parvalbumin-containing GABAergic neurons in the basal ganglia output system of the rat.J. Comp. Neurol.350, 324–336 (1994).PubMedCrossRefGoogle Scholar
  69. 69.
    Hontanilla, B., Parent, A. & Gimenez-Amaya, J. M. Parvalbumin and calbindin D-28k in the entopeduncular nucleus, subthalamic nucleus, and substantia nigra of the rat as revealed by double immunohistochemical methods.Synapse25, 359–397 (1997).PubMedCrossRefGoogle Scholar
  70. 70.
    Kaneko, T., Akiyama, H., Nagatsu, I. & Mizuno, N. Immunohistochemical demonstration of glutaminase in catecholaminergic and serotonergic neurons of rat brain.Brain Res.507, 151–154 (1990).PubMedCrossRefGoogle Scholar
  71. 71.
    Kimura, H., McGeer, P. L., Peng, J. H. & McGeer, E. G. The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat.J. Comp. Neurol.200, 151–201 (1981).PubMedCrossRefGoogle Scholar
  72. 72.
    Beninato, M. & Spencer, R. F. A cholinergie projection to the rat substantia nigra from the pedunculopontine tegmental nucleus.Brain Res.412, 169–174 (1987).PubMedCrossRefGoogle Scholar
  73. 73.
    Bolam, J. P., Francis, C. M. & Henderson, Z. Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study.Neurosci.41, 483–494 (1991).CrossRefGoogle Scholar
  74. 74.
    Faull, R. L. & Carman, J. B. Ascending projections of the substantia nigra in the rat.J. Comp. Neurol.132, 73–92 (1968).PubMedCrossRefGoogle Scholar
  75. 75.
    Steininger, T. L., Rye, D. B. & Wainer, B. H. Afferent projections to the cholinergic pedunculopontine tegemental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies.J. Comp. Neurol.312, 515–543 (1992).CrossRefGoogle Scholar
  76. 76.
    Fallon, J. H.&Loughlin, S. E. Substantia nigra. In G Paxinos (ed): In The Rat Nervous System.Sydney: Academic Press353–374 (1985).Google Scholar
  77. 77.
    Preston, R. J., McCrea, R. A., Chang, H. T. & Kitai, S. T. Anatomy and physiology of substantia nigra and retrorubral neurons studied by extra-and intracellular recording and by horseradish peroxidase labeling.Neurosci.6, 331–344 (1981).CrossRefGoogle Scholar
  78. 78.
    Tepper, J. M., Sawyer, S. F. & Groves, P. M. Electrophysiologically identified nigral dopaminergic neurons intracellularly labeled with HRP: light-microscopic analysis.J. Neurosci.7, 2794–2806 (1987).PubMedGoogle Scholar
  79. 79.
    Hajos, M. & Greenfield, S. A. Topographic heterogeneity of substantia nigra neurons: Diversity in intrinsic membrane properties and synaptic inputs.Neurosci.55, 919–934 (1993).CrossRefGoogle Scholar
  80. 80.
    Kita, T., Kita, H. & Kitai, S. T. Electrical membrane properties of rat substantia nigra compacta neurons in an in vitro slice preparation.Brain Res.372, 21–30 (1986).PubMedCrossRefGoogle Scholar
  81. 81.
    Hajos, M. & Greenfield, S. A. Synaptic connections between pars compacta and pars reticulata neurones: electrophysiological evidence for functional modules within the substantia nigra.Brain Res.660, 216–224 (1994).PubMedCrossRefGoogle Scholar
  82. 82.
    Kan-. Y. & Kita, S. T. A whole cell patch-clamp study on the pacemaker potential in dopaminergicneruons of rat substantia nigra compacta.Neuroscience Research18, 209–221 (1993b).CrossRefGoogle Scholar
  83. 83.
    Charlety, P. J.et al.Burst firing of mesencephalic dopamine neurons is inhibited by somatodendritic application of kynurenate.Acta Physiol. Scand.142, 105–112 (1991).PubMedCrossRefGoogle Scholar
  84. 84.
    Chergui, K.et al.Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo.Eur. J. Neurosci.5, 137–144 (1993).PubMedCrossRefGoogle Scholar
  85. 85.
    Johnson, S. W., Seutin, V. & North, R. A. Burst firing in dopamine neurons induced by Nmethyl-D-aspartate: role of electrogenic sodium pump.Science258, 665–667 (1992).PubMedCrossRefGoogle Scholar
  86. 86.
    Di Loreto, S., Florio, T. & Scarnati, E. Evidence that non-NMDA receptors are involved in the excitatory pathway from the pedunculopontine region to nigrostriatal dopaminergic neurons.Expl. Brain Res.89, 79–86 (1992).CrossRefGoogle Scholar
  87. 87.
    Kang, Y. & Kitai, S. T. Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata.Brain Res.535, 79–95 (1990).PubMedCrossRefGoogle Scholar
  88. 88.
    Hausser, M. A. & Yung, W. H. Inhibitory synaptic potentials in guinea-pig substantia nigra dopamine neurones in vitro.J. Physiol. Lond. 479 401–422 (1994). PubMedGoogle Scholar
  89. 89.
    Tepper, J. M., Martin, L. P. & Anderson, D. R. GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons.J. Neurosci.15, 3092–3103 (1995).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • S. T. Kitai
    • 1
  • N. Ichinohe
    • 1
  • J. Rohrbacher
    • 1
  • B. Teng
    • 1
  1. 1.Department of Anatomy and NeurobiologyThe University of Tennessee, College of MedicineTennesseeUSA

Personalised recommendations