Advertisement

Selection and the Basal Ganglia

A role for dopamine
  • P. Redgrave
  • T. Prescott
  • K. Gurney
Part of the Advances in Behavioral Biology book series (ABBI, volume 54)

Abstract

Evidence from both the biological and artificial neural network literature suggests that many operations within the brain are carried out in parallel. Thus, it is now widely recognised that analyses of different qualities of the same stimulus are performed separately in specialised regions of the brain (Goodale, 1996). Representations of external and internal events which can determine or guide specific types of behaviour, action and movement are also distributed throughout the nervous system (Ewert, 1995). In both cases, however, distributed parallel processing appears to be constrained by, on the one hand, the need to think about or attend to only one thing at a time, and on the other, the need to avoid trying to do two different things with the same set of muscles. Selection mechanisms in the brain must therefore operate in both cognitive and motor domains to prevent parallel confusion.

Keywords

Basal Ganglion Superior Colliculus Reciprocal Inhibition Salient Event Central Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, R. L., Young, A. B. and Penney, J. B., 1989, The functional anatomy of basal ganglia disorders.Trends Neurosci.12: 366–375.PubMedCrossRefGoogle Scholar
  2. Alexander, G E., DeLong, M. R. and Strick, P. L., 1986, Parallel organization of functionally segregated circuits linking basal ganglia and cortex.Ann. Rev. Neurosci.9: 357–381.PubMedCrossRefGoogle Scholar
  3. Brooks, R. A., 1994, Coherent behaviour from many adaptive processes. in: “From Animals to Animats 3: Proceedings of the Third International Conference on the Simulation of Adaptive Behaviour” D. Cliff, P. Husbands, J.-A. Meyer and S. W. Wilson Eds., MIT Press, Cambridge, MA, pp. 22–29.Google Scholar
  4. Brown, L. L. and Sharp, F. R., 1995, Metabolic mapping of rat striatum: somatotopic organization of sensorimotor activity.Brain Res.686: 207–222.PubMedCrossRefGoogle Scholar
  5. Chevalier, G. and Deniau, J. M., 1990, Disinhibition as a basic process in the expression of striatal functions.Trends Neurosci.13: 277–281.PubMedCrossRefGoogle Scholar
  6. Cools, A. R., 1980, Role of the neostriatal dopaminergic activity in sequencing and selecting behavioural strategies: Facilitation of processes involved in selecting the best strategy in a stressful situation.Behay. Brain Res.1: 361–378.CrossRefGoogle Scholar
  7. Deniau, J. M. and Chevalier, G, 1985, Disinhibition as a basic process in the expression of striatal functions II. The striato-nigral influence on halamocortical cells of the ventromedial thalamic nucleus.Brain Res.334: 227–233.PubMedCrossRefGoogle Scholar
  8. Ewert, J.-P., 1995, Command neurons and command systems. in: “The Handbook of Brain Theory and Neural Networks” M. A. Arbib Ed., MIT Press, Cambridge, MA, pp. 215–220.Google Scholar
  9. Gallistel, C. R., 1980, “The organization of action: A new synthesis.”, Lawrence Erlbaum Assoc., New Jersey.Google Scholar
  10. Gerfen, C. R. and Wilson, C. J., 1996, The basal ganglia. in: “Handbook of chemical neuroanatomy, Vol 12: Integrated systems of the CNS, Part III.” L. W. Swanson, A. Bjorklund and T. Hokfelt Eds., Elsevier, Amsterdam, pp. 371–468.Google Scholar
  11. Goodale, M. A., 1996, Visuomotor modules in the vertebrate brain.Can. J. Physiol. Pharmacol. 74:390–400.PubMedCrossRefGoogle Scholar
  12. Graybiel, A., 1991, Basal ganglia input, neural activity, and relation to the cortex.Current Opinion Neurobiol. 1:644–651.CrossRefGoogle Scholar
  13. Graybiel, A. M., 1998, The basal ganglia and chunking of action repertoires.Neurobiol. Learn. Memory70: 119–136.CrossRefGoogle Scholar
  14. Gurney, K., Prescott T.J., Redgrave P. (2001a) A computational model of action selection in the basal ganglia I: A new functional anatomy.Biological Cybernetics84, 401–410.CrossRefGoogle Scholar
  15. Gurney, K., Prescott T.J., Redgrave P. (2001b) A computational model of action selection in the basal ganglia II:Analysis and simulation of behaviour.Biological Cybernetics84, 411–423.CrossRefGoogle Scholar
  16. Gurney, K., Redgrave, P. and Prescott, T. J., 1998, A computational model of selective properties with the basal ganglia: a reinterpretation of functional anatomy.Soc. Neurosci. Abstr.24: 649.13.Google Scholar
  17. Hernandez-Peon, R., 1961, Reticular mechanisms of sensory control. in: “Sensory communication.” W. A. Rosenblith Ed., MIT Press, Cambridge, MA., pp. 497–520.Google Scholar
  18. Hikosaka, O., 1994, Role of basal ganglia in control of innate movements, learned behaviour and cognition - A hypothesis. in: “The basal ganglia IV: New ideas and data on structure and function.” G Percheron, J. S. McKenzie and J. Feger Eds., Plenum Press, New York, pp. 589–596.CrossRefGoogle Scholar
  19. Hikosaka, O. and Wurtz, R. H., 1983, Visual and oculomotor function of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades.J. Neurophysiol.49: 1230–1253.PubMedGoogle Scholar
  20. Holstege, G., 1991, Descending motor pathways and the spinal motor system: limbic and non limbic components.Prog. Brain Res.87: 307–421.PubMedCrossRefGoogle Scholar
  21. Humphries M.D., Gurney K. (2002) The role of intra-thalamic and thalamocortical circuits in action selection.Network: Computation in Neural Systems 13131–156.Google Scholar
  22. Jaeger, D., Kita, H. and Wilson, C. J., 1994, Surround inhibition among projection neurones is weak or nonexistent in the rat neostriatum.J. Neurophysiol.72: 2555–2558.PubMedGoogle Scholar
  23. Jay, M. F. and Sparks, D. L., 1987, Sensorimotor integration in the primate superior colliculus. I. Motor convergence.J. Neurophysiol.57: 22–34.PubMedGoogle Scholar
  24. Maes, P., 1995, Modelling adaptive autonomous agents. in: “Artificial Life: An Overview” C. G Langton Ed., MIT Press, Cambridge, MA, pp. 135–162.Google Scholar
  25. Marsden, C. D. and Obeso, J. A., 1994, The function of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease.Brain117: 877–897.PubMedCrossRefGoogle Scholar
  26. McFarland, D., 1989, “Problems of animal behaviour.”, Longman Scientific and Technical, London. McFarland, D. J., 1965, Flow graph representation of motivational systems.Brit. J. Math. Stat. Psychol.18: 25–43.CrossRefGoogle Scholar
  27. Mink, J. W., 1996, The basal ganglia: Focused selection and inhibition of competing motor programs.Prog. Neurobiol.50: 381–425.PubMedCrossRefGoogle Scholar
  28. Prescott, T. J., Redgrave, P. and Gurney, K. N., 1999, Layered control architectures in robots and vertebrates.Adaptive Behavior7: 99–127.CrossRefGoogle Scholar
  29. Redgrave, P., Prescott, T. and Gurney, K. N., 1999a, The basal ganglia: A vertebrate solution to the selection problem ?Neuroscience89: 1009–1023.CrossRefGoogle Scholar
  30. Redgrave, P., Prescott, T. J. and Gurney, K., 1999b, Is the short latency dopamine burst too short to signal reward error ?Trends Neurosci.22: 146–151.CrossRefGoogle Scholar
  31. Robbins, T. W. and Sahakian, B. J., 1983, Behavioural effects of psychomotor stimulant drugs: Clinical and neuropsychological implications. in: “Stimulants: Neurochemical, behavioural and clinical perspectives.” I. Creese Ed., Raven Press, New York, pp. 301–338.Google Scholar
  32. Rolls, E. T., 1994, Neurophysiology and cognitive functions of the striatum.Revue Neurologique150: 648–660.PubMedGoogle Scholar
  33. Salamone, J. D., Cousins, M. S. and Synder, B. J., 1997, Behavioural functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis.Neurosci. Biobehay. Rev.21: 341–359.CrossRefGoogle Scholar
  34. Schultz, W., 1998, Predictive reward signal of dopamine neurons.J. Neurophysiol.80: 1–27.PubMedGoogle Scholar
  35. Schultz, W., Apicella, P., Romo, R. and Scamati, E., 1995, Context-dependent activity in primate striatum reflecting past and future behavioural events. in: “Models of information processing in the basal ganglia.” J. C. Houk, J. L. Davis and D. G Beiser Eds., MIT Press, Cambridge, MA., pp. 11–27.Google Scholar
  36. Schultz, W., Dayan, P. and Montague, P. R., 1997, A neural substrate of prediction and reward.Science275: 1593–1599.PubMedCrossRefGoogle Scholar
  37. Snaith, S. and Holland, 0., 1990, An investigation of two mediation strategies suitable for behavioural control in animals and animats. in: “From Animals to Animats: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour” J.-A. Meyer and S. Wilson Eds., MIT Press, Cambridge, MA, pp. 255–262.Google Scholar
  38. Strick, P. L., Dum, R. P. and Picard, N., 1995, Macro-organization of the circuits connecting the basal ganglia with the cortical motor areas. in: “Models of information processing in the basal ganglia.” J. C. Houk, J. L. Davis and D. G Beiser Eds., MIT Press, Cambridge, MA., pp. 117–130.Google Scholar
  39. Weiner, I., 1990, Neural substrates of latent inhibition - the switching model.Psychological Bulletin108: 442–461.PubMedCrossRefGoogle Scholar
  40. Wickens, J., 1993, “A theory of the striatum.”, Pergamon, Oxford.Google Scholar
  41. Wurtz, R. H. and Goldberg, M. E., 1972, The primate superior colliculus and the shift of visual attention.Invest. Ophthalmol.11: 441–50.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • P. Redgrave
    • 1
  • T. Prescott
    • 1
  • K. Gurney
    • 1
  1. 1.Dept. of PsychologyUniv. of SheffieldSheffieldUSA

Personalised recommendations