Skip to main content

Surround Inhibition in the Basal Ganglia

  • Chapter
The Basal Ganglia VI

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 54))

Abstract

This chapter is a review of existing evidence and current thinking in relation to the concept of surround inhibition in the basal ganglia. In the following sections, the possibility of inhibitory interactions among spiny projection neurons will be reconsidered in the light of recent evidence. Statistical considerations based on quantitative neuroanatomical fmdings suggest a low probability of synaptic connection between neighbouring neurons. Electrophysiological studies have failed to demonstrate inhibitory interactions between spiny projection neurons. Together these fmdings suggest that inhibitory interactions among spiny projection neurons are relatively sparse. This suggests that the collaterals of spiny projection neurons are not the major source of surround inhibition. Instead, feedforward inhibition by a network of GABA/parvalbumin containing intemeurons seems to explain surround inhibition at a macroscopic level. New models are needed to address the functional significance of powerful feedforward inhibition by GABA/parvalbumin containing intemeurons, and the function of sparse inhibitory interactions between spiny projection neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oorschot, D.E. (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the Cavalieri and optical disector methods.J. Comp. Neurol.366: 580–99.

    Article  PubMed  CAS  Google Scholar 

  2. Somogyi, J.P., Bolam, J.P. and Smith, A.D. (1981) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscope study using the Golgi-peroxidase transport degeneration procedure.J. Comp. Neurol.195: 567–84.

    Article  PubMed  CAS  Google Scholar 

  3. Dube, L., Smith-A.D. and Bolam, J.P. (1988) Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neostriatum.J. Comp. NeuroL267:455–71.

    Article  PubMed  CAS  Google Scholar 

  4. Wilson, C.J. and Groves, P.M. (1980) Fine structure and synaptic connection of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase.J. Comp. Neurol.194: 599–615.

    Article  PubMed  CAS  Google Scholar 

  5. Precht, W. and Yoshida, M. (1971) Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin.Brain Res.32: 229–33.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida, M. and Precht, W. (1971) Monosynaptic inhibition of neurons of substantia nigra by caudatonigral fibres.Brain Res. 32:225–8.

    Article  PubMed  CAS  Google Scholar 

  7. Bolam, J.P., Powell, J.F., Wu, J.-Y. and Smith, A.D. (1985) Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi-impregnation with immunocytochemistry.J. Comp. NeuroL237: 1–20.

    Article  PubMed  CAS  Google Scholar 

  8. Kita, H. and Kitai, S.T. (1988) Glutamate decarboxylase immunoreactive neurons in cat neostriatum: Their morphological types and populations.Brain Res.447: 346–52.

    Article  PubMed  CAS  Google Scholar 

  9. Kubota, Y., Inagaki, S., Shimada, S., Kito, S. and Wu J, Y. (1987) Glutamate decarboxylase-like immunoreactive neurons in the rat caudate putamen.Brain Res. Bull.18: 687–97.

    Article  PubMed  CAS  Google Scholar 

  10. Kita, H. (1993) GABAergic circuits of the striatum.Prog. Brain Res.90: 51–72.

    Article  Google Scholar 

  11. Aronin, N., Chase, K. and DiFiglia, M. (1986) Glutamic acid decarboxylase and enkephalin immunoreactive axon terminals in the rat neostriatum synapse with striatonigral neurons.Brain Res.365: 151–8.

    Article  PubMed  CAS  Google Scholar 

  12. Pasik, P., Pasik, T., Holstein, G. and Hamori, J. (1988) GABAergic elements in the neuronal circuits of the monkey neostriatum: A light and electron microscopic immunocytochemical study.J. Comp. Neurol.270: 157–70.

    Article  PubMed  CAS  Google Scholar 

  13. Cowan, R.L., Wilson, C.J., Emson, P.C. and Heizmann, C.W. (1990) Parvalbumin-containing GABAergic interneurons in the rat neostriatum.Neuroscience57: 661–71.

    Google Scholar 

  14. Braitenberg, V. and Shüz, A. (1991)Anatomy of the cortex: Statistics and geometry.Berlin: Springer.

    Google Scholar 

  15. Deuchars, J., West, D.C. and Thomson, A.M. (1994) Relationship between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro.J. Physiol.478: 423–35.

    PubMed  Google Scholar 

  16. Ingham, C.A., Hood, S.H., Taggart, P. and Arbuthnott, G.W. (1998) Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway.J. Neuroscience 18:4732–43.

    CAS  Google Scholar 

  17. Wilson, C.J. (1999) Striatal circuitry: Categorically selective, or selectively categorical?in Brain dynamics and the striatal complex., R. Miller and J.R. Wickens, Eds. Harwood Academic. p. 289–305.

    Google Scholar 

  18. Wickens, J.R. and Miller, R. (1997) A formalisation of the neural assembly concept 1. Constraints on neural assembly size.Biol. Cybern.77, 351–8.

    Article  Google Scholar 

  19. .Liley, D.T.J. and Wright, J.J. (1994) Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry.Network 5: 175–89.

    Article  Google Scholar 

  20. Freund, T.F., Powell, J.F. and Smith, A.D. (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines.Neuroscience13: 1189–215.

    Article  PubMed  CAS  Google Scholar 

  21. Walker, R.H., Arbuthnott, G.W., Baughman, R.W. and Graybiel, A.M. (1993) Dendritic domains of medium spiny neurons in the primate striatum: Relationships to striosomal borders. J.Comp. Neurot.337:614–28.

    Article  CAS  Google Scholar 

  22. Walker, R.H. and Graybiel, A.M. (1993) Dendritic arbors of spiny neurons in the primate striatum are directionally polarized. J.Comp. Neurot.337: 629–39.

    Article  CAS  Google Scholar 

  23. Kawaguchi, Y., Wilson, C.J. and Emson, P.C. (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin.J. Neuroscience10: 3421–38.

    CAS  Google Scholar 

  24. Oorschot, D.E. (1999) The domain hypothesis: a central organising principle for understanding neostriatal circuitry? inBrain dynamics and the striatal complex.R. Miller and J.R. Wickens, Eds. Harwood Academic. p. 65–76.

    Google Scholar 

  25. Bolam, P. and Izzo, P.N. (1988) The postsynaptic targets of substance P-immunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons.Exp. Brain Res.70: 361–77.

    Article  PubMed  CAS  Google Scholar 

  26. Yung, K.K.L., Smith, A.D., Levey, A.I. and Bolam, J.P. (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat: Evidence from dopamine receptor and neuropeptide immunostaining.Eur. J. Neurosci. 8:861–9.

    Article  PubMed  CAS  Google Scholar 

  27. DiFiglia, M., Aronin, N. and Martin, J.B. (1982) Light and electron microscopic localization of immunoreactive leu-enkephalin in the monkey basal ganglia. J.Neuroscience2: 303–20.

    CAS  Google Scholar 

  28. Bernardi, G., Marciani, M.G., Morocutti, C. and Giacomini, P. (1975) The action of GABA on rat caudate neurones recorded intracellularly.Brain Res.92: 511–5.

    Article  PubMed  CAS  Google Scholar 

  29. Wilson, C.J., Chang, H.T. and Kitai, S.T. (1983) Disfacilitation and long-lasting inhibition of neostriatal neurons in the rat.Exp. Brain Res.51: 227–35.

    PubMed  CAS  Google Scholar 

  30. Kita, T., Kita, H. and Kitai, S.T. (1985) Local stimulation induced GABAergic response in rat striatal slice preparations: intracellular recording on QX-314 injected neurons.Brain Res.360: 304–10.

    Article  PubMed  CAS  Google Scholar 

  31. Lighthall, JW., Park, M.R. and Kitai, S.T. (1981) Inhibition in slices of rat neostriatum.Brain Res. 212:182–7.

    Article  PubMed  CAS  Google Scholar 

  32. Koos, T. and Tepper, J.M. (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons.Nature Neuroscience2: 467–72.

    Article  PubMed  CAS  Google Scholar 

  33. Park, M.R., Lighthall, J.W. and Kitai, S.T. (1980) Recurrent inhibition in the rat neostriatum.Brain Res.194:359–69.

    Article  PubMed  CAS  Google Scholar 

  34. Wilson, C.J., Chang, H.T. and Kitai, S.T. (1982) Origins of postsynaptic potentials evoked in identified rat neostriatal neurons by stimulation in substantia nigra.Exp. Brain Res.45: 157–67.

    Article  PubMed  CAS  Google Scholar 

  35. Wilson, C.J. (1986) Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex.Brain Res.367: 201–13.

    Article  PubMed  CAS  Google Scholar 

  36. Jaeger, D., Kita, H. and Wilson, C.J. (1994) Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum.J. Neurophys.72: 2555–8.

    CAS  Google Scholar 

  37. Behrends, J.C. and Bruggencate, G. (1998) Changes in quantal size distributions upon experimental variations in the probability of release at striatal inhibitory synapses.J. Neurophys.79: 2999–3011.

    CAS  Google Scholar 

  38. Radnikow, G., Rohrbacher, J. and Misgeld, U. (1997) Heterogeneity in use-dependent depression of inhibitory postsynaptic potentials in the rat neostriatum in vitro. J.Neurophys.77: 427–434.

    CAS  Google Scholar 

  39. Tepper, J.M., Paladini, C.A. and Celada, P. (1998) GABAergic control of the firing pattern of substantia nigra dopaminergic neurons.Adv. Pharmacol.42: 694–9.

    Article  PubMed  CAS  Google Scholar 

  40. Rebec, G.V. and Curtis, S.D. (1988) Reciprocal zones of excitation and inhibition in the neostriatum.Synapse2: 633–35.

    Article  PubMed  CAS  Google Scholar 

  41. Deniau,J.M. and Chevalier, G. (1985) Disinhibition as a basic process in the expression of striatal functions. II The striatonigral influence on thalamocortical cells of the ventromedial thalamic nucleus.Brain Res.334: 227–33.

    Article  PubMed  CAS  Google Scholar 

  42. Tremblay, L., Filion, M. and Bedard, B.J. (1989) Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism.Brain Res.498: 17–33.

    Article  PubMed  CAS  Google Scholar 

  43. Kita, H., Kosaka, T. and Heizmann, C.W. (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study.Brain Res.536: 1–15.

    Article  PubMed  CAS  Google Scholar 

  44. Lapper, S.R., Smith, Y., Sadikot, A.F., Parent, A. and Bolam, J.P. (1992) Cortical input to parvalbuminimmunoreactive neurones in the putamen of the squirrel monkey.Brain Res.580: 215–24.

    Article  PubMed  CAS  Google Scholar 

  45. Bennett, B.D. and Bolam, J.P. (1994) Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat.Neuroscience62: 707–19.

    Article  PubMed  CAS  Google Scholar 

  46. Parthasarathy, H.B. and Graybiel, A.M. (1997) Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey. J.Neuroscience17: 2477–91.

    CAS  Google Scholar 

  47. Wickens, J.R., Alexander, M.E. and Miller, R. (1991) Two dynamic modes of striatal function under dopaminergic-cholinergic control: simulation and analysis of a model.Synapse8: 1–12.

    Article  PubMed  CAS  Google Scholar 

  48. Mink, J.W. (1996) The basal ganglia: focused selection and inhibition of competing motor programs.Prog. Neurobiol.50: 381–425.

    Article  PubMed  CAS  Google Scholar 

  49. Plenz, D. and Kitai, S.T. (1999) Adaptive classification of cortical input to the striatum by competitive learning, inBrain dynamics and the striatal complex.R. Miller and J.R. Wickens, Eds. Harwood Academic. p. 169–77.

    Google Scholar 

  50. Wickens, J.R. and Arbuthnott, G.W. (1993) The corticostriatal system on computer simulation: An intermediate mechanism for sequencing of actions.Prog. Brain Res.99: 325–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wickens, J.R. (2002). Surround Inhibition in the Basal Ganglia. In: Graybiel, A.M., Delong, M.R., Kitai, S.T. (eds) The Basal Ganglia VI. Advances in Behavioral Biology, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0179-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0179-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4955-6

  • Online ISBN: 978-1-4615-0179-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics