Phenotypic Overlap between Monocytes and Vascular Endothelial Cells

  • Alexander Schmeisser
  • Christiane Graffy
  • Werner G. Daniel
  • Ruth H. Strasser
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 522)

Summary

During embryonic development, endothelial cells (ECs) develop organ specific properties. ECs express specific markers, which are helpful in identifying these cells in vivo and in culture. Interestingly, most of the supposed specific endothelial markers are present on both ECs and hematopoietic precursors or mature blood cells, which correspond to the idea of a common embryonic precursor. Monocytes/makrophages and monocyte-derived dendritic cells, as more differentiated hematopoietic cell populations, show a wide phenotypic overlap with particularly hepatic sinusoidal, and microvascular endothelial cells within inflamed tissue, such as neovascularizised complicated atherosclerotic plaques. Furthermore, under local angiogenic growth conditions monocytes or monocyte precursors or immature dendritic cells may differentiate into endothelial like cells. First evidence suggests an endothelium-independent revascularization potential carried by monocyte-derived macrophages. These macrophages have been shown to form tunnel-like structures in ischemic regions. Future studies have to address the question, whether monocyte-/dendritic cell-derived endothelial like cells can develop a similar functional behaviour in vasoregulation, coagulation and fibrinolysis, as described for vascular endothelial cells, and thus may contribute to neoangiogenesis by a direct vessel-forming role.

Keywords

Endothelial Cell Vascular Endothelial Growth Factor Dendritic Cell Vascular Endothelial Cell Microvascular Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Garlanda, and E. Dejana. Heterogenity of endothelial cells. Specific markersArrerioscler Tromh Vase Biol.171193–1202.(1997).Google Scholar
  2. 2.
    D. B. Cines, ES. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmermann, R. P.McEver, J. S. Pober, T. M. Wick, B. A. Konkle. B. S. Schwatz. E. S. Barnathan, K. R. McCrae, B. A. Hug. A. M. Schmidt. and D. Stern, Endothelial cells in physiology and in the pathophysiology of vascular disorders.Blood 913527–3561 (1997).Google Scholar
  3. 3.
    T. N. Sato, Y. Qin. C. A. Kozak, and KL Audus, Tie-1 and Tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system, (erratum 1993, 90:12056)Proc Nail Acad Sei(USA)909355–9358 (1993).CrossRefGoogle Scholar
  4. 4.
    F. Shalaby, J. Ho, W. L. Stanford. K. D. Fischer. A. C. Schuh, L. Schwartz, A. Bernstein and J. Rossant, A requirement for Flk-I in primitive and definitive hematopoiesis and vasculogenesisCell .89981–990 (1999).CrossRefGoogle Scholar
  5. 5.
    A. Eichmann, C. Corbel, V. Nataf. P. Vaigot, C. Bream, and N. M. L. Douarin, Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2.Proc Natl Acad Sci(USA)94.5141–5146 (1997).CrossRefGoogle Scholar
  6. 6.
    T. Asahara, T. Murohara, A. Sullivan, M. Silver. R. van der Zee. T. Li. B. Witzenbichler. G. Schattemann and J. M. Isner, Isolation of putative progenitor endothelial cells for angiogenesisScience 275:964–967 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Nieda. A. Nicol, P. Denning-Kendall. J. Sweetenham. B. Bradle. and J. Hows, Endothelial cell precursors are normal components of human umbilical cord blood. British J Haematology 98775–777 (1997).CrossRefGoogle Scholar
  8. 8.
    B. Q. Shi. S. Rafii, M. H. D. Wu, E. S. Wijelath. C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L. R. Sauvage, M. A. S. Moore. R. F. Storb. and W. P. Hammond, Evidence for circulating bone marrow-derived endothelial cells.Blood 92362–367 (1998).PubMedGoogle Scholar
  9. 9.
    M. Peichev, A. J. Naiyer. D. Pereira, Z. Zhu. W. J. Lane, M. Williams, M. C. Oz, D. J. Hicklin, L. Witte, M. S. Moore. and S. Rafii. Expression of VEGFR-2 and AC133 by circulating human CD34’ cells identifies a population of functional endothelial precursorsBlood 95952–958 (2000).PubMedGoogle Scholar
  10. 10.
    T. Mustonen, K. Alitalo, Endothelial receptor tyrosine kinases involved in angiogenesisJ Cell Biol 129.895–902 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Shalaby, J. Rossant. T. P. Yamaguchi. M. Gertsenstein. X. F. Wu. M. L. Breituran, and A. C. Schuh, Failure of blood island formation and vasculogenesis in FIk- I -deficient mice.Nature 37662–66 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Yamashita, H. Itoh. M. Hirashima, M. Ogawa. S. Nishikawa, T. Yurugi. M. Naito. K. Nakao. and S. 1. Nishikawa, Flk I -positive cells derived from embryonic stem cells serve as vascular progenitorsNature 40892–96 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    B. L. Ziegler, M. Valtieri. G. A. Porada, R. De Maria, R. Muller. B. Masella. M. Gabbianelli. 1. Casella, E. Pelosi, T. Bock, E. D. Zanjani, and C. Peschle, KDR receptor: a key marker defining hematopoietic stem cellsScience 2851553–1558 (1999).Google Scholar
  14. 14.
    K. Choi, M. Kennedy, A. Kazarow, J. C. Papadimitiou. and G. Keller, A common precursor for hematopoietic and endothelial cells.Development 125.725–732 (1998).PubMedGoogle Scholar
  15. 15.
    S. Miraglia, W. Godfrey, A. H. Yin, K. Atkins. R.Warnke. J. T. Holden. R. A. Bray. E. K. Waller. and D. W. Buck, A novel five-transmeinbrane hematopoietic stem cell antigen: isolation. characterization. and molecular cloningBlood 90.5013–5021 (1997).PubMedGoogle Scholar
  16. 16.
    A. H. Yin. S. Miraglia, E. D. Zaniani, G. Almeida-Porada. M. Ogawa, A. G. Leary. J. Olweus, J. Kearney, and D. W. Buck, AC133, a novel marker for human hematopoietic stem and progenitor cells.Blood 905002–5012 (1997).PubMedGoogle Scholar
  17. 17.
    U.M. Gehling, S. Ergün, U. Schumacher, C. Wagener, K. Pantel, M. Otte, G. Schuch, P. Schaffhausen, T. Mende, N. Kilic, K. Kluge, B. Schäfer, D. K. Hossfeld and W. Fiedler, In vitro differentiation of endothelial cells from ACI33-positive progenitor cellsBlood 953106–3112 (2000).PubMedGoogle Scholar
  18. 18.
    T. Asahara, H. Masuda, T. Takahashi, C. Kalka. C. Pastore. M. Silver, M. Keame, M. Magner, and J. M. Isner, Bone marrow origin of endothelial progenitor cells responsible for postnatal Vasculogenesis in physiological and pathological neovascularizationCirc Res 85.221–228 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    C. Kalka, H. Masuda, T. Takahashi, M. Kalka-Moll, M. Silver, M. Kearney. T.Li. J.M. Isner, and T. Asahara, Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic NeovascularizationProc Nall Acad Sci(USA)97.3422–3427 (2000).CrossRefGoogle Scholar
  20. 20.
    M. Shima, S. L. Teitelbaum, V. M. Holers, C. Ruzicka, P. Osmack, and F. P. Ross, Macrophage-colonystimulating factor regulates expression of the integrins alpha 4 beta I and alpha 5 beta I by murine bone marrow macrophagesProc Nail Acad Sci(USA)92.5179–5183 (1995).CrossRefGoogle Scholar
  21. 21.
    R. Giavazzi, and I. R. Hart, Mononuclear phagocyte adherence in the presence of laminin. A possible marker of cellular differentiationExp Cell Res 146391–399 (1993).CrossRefGoogle Scholar
  22. 22.
    J. M. Austin, and D. Phil, Dendritic cellsCurr Opin Hemato.l5, 3–15 (1998).Google Scholar
  23. 23.
    C. Trezzini, T. W. Jungi, M. O. Spycher, F. E. Maly. and P. Rao. Human monocytes CD36 and CDI6 are signaling molecules. Evidence from studies using antibody-induced chemiluminescence as a tool to probe signal transductionImmunology 7129–37 (1990).PubMedGoogle Scholar
  24. 24.
    H. Strobl, C. Scheinecker, B. Cesmarits, O. Majdic, and W. Knapp. Flow cytometric analysis of intracellular CD68 molecule expression in normal and malignant heamapoiesis.British J Haematol 90774–782 (1995).CrossRefGoogle Scholar
  25. 25.
    G. Ocklind, D. Friedrichs, and J. H. Peters, Expression of CD54, CD58, CD14„ and HLA-DR on macrophage and macrophage derived accessory cells and their accessory capacity.Immunol Len31. 253–258 (1992)CrossRefGoogle Scholar
  26. 26.
    S. H. Lee, P. R. Crocker, S. Westaby, N. Key. D. Y. Mason. S. Gordon. and D. J. Weatherall. Isolation and immunocytochemical characterization of human bone marrow stromal macrophages in hemopoietic clustersJ Exp Med 1681193–1198 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    P. J. Newman, and S. M. Albelda, Cellular and molecular aspects of PECAM-1Nouv Rev Fr Hematol 34Suppl:S9–13 (1992).Google Scholar
  28. 28.
    A. Sawano, S. lwai, Y. Sakurai, M. Ito. K. Shitara, T. Nakahata, and M. Shibuya. FIt-1, vascular endothelial growth factor receptor I, is a novel cell surface marker for the lineage of monocyte-macrophages in humansBlood 97785–791.(2001)PubMedCrossRefGoogle Scholar
  29. 29.
    A. M. Schmidt, S. D. Yan, J. Brett, R. Mora, R. Nowygrod. and D. Stem, Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end productsJ Clin Invest 912155–2168 (1993).CrossRefGoogle Scholar
  30. 30.
    J. Banchereau, F. Bazan, D. Blanchard, F. Briere, J. P. Galizzi. C. van Knoten, Y. J. Liu. F. Rousset, and S. Sealand, The CD40 antigen and ist ligandAnnu Rev Immunol 12.881–922 (1994).PubMedCrossRefGoogle Scholar
  31. 31.
    K. Shimada, and Y. Yazaki, Binding sites for angiotensin I1 in human leucocytesJ Biochem 841013–1015 (1978).PubMedGoogle Scholar
  32. 32.
    C. L. Manyak, H. Tse, P. Fischer, L. Coker, N. H. Signal. and G. C. Koo, Regulation of class Il MHC molecules on human endothelial cells. Effects of IFN and dexamethasoneJ Immunol 140.3817–3822 (1988).PubMedGoogle Scholar
  33. 33.
    A. Shore, P. Leary, and J. M. Teitel, Comparison of accessory cell functions of endothelial cells and monocytes: II-2 production by T cells and PFC generation.Cell Immunol100.210–217 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    P. H. Hart, G. A. Whitty, D. R. Burgess, M. Croatto, and J. A. Hamilton. Augmentation of glucocorticoid action on human monocytes by interleucin-4Lymphokine Res 9 147–153 (1990).PubMedGoogle Scholar
  35. 35.
    I. Vallee, J. M. Guillaumin, G. Thibault, Y. Gruel. Y. Lebranchu, P. Bardos, and H. Warier, Human T lymphocyte proliferative response to resting porcine endothelial cells results from an HLA-restricted, IL-10 sensitive, indirect presentation pathway but also depends on endothelial-specific costimulatory factorsJ Immunol 1611652–1658 (1998).PubMedGoogle Scholar
  36. 36.
    W. W. Hancock, M. H. Sayegh, X. G. Zheng, R. Peach, and P. S. Linsley, Costimulatory function and expression of CD40 ligand, CD80. and CD86 in vascularized murine cardiac allograft rejection Proc Nall Acad Sci (USA)9313967–13973 (1996).CrossRefGoogle Scholar
  37. 37.
    K. Seino, M. Azuma, H. Bashuda, K. Fukao, H. Yagita, and K. Okumura, CD86 (B70/B7–2) on endothelial cells co-stimulates allogeneic CD4+ T cells, In:Immunol 71331–1337 (1995).Google Scholar
  38. 38.
    K. C. Jollow, J. C. Zimring, J.B. Sundstrom, and A. A. Ansari, CD40 ligation induced phenotypic and functional expression of CD80 by human cardiac microvascular endothelial cellsTransplantation 68430–439 (1999).PubMedCrossRefGoogle Scholar
  39. 39.
    M.D. Dentn, C. S. Geehan, S. I. Alexander, M. H. Sayegh, and D. M. Briscoe, Endothelial cells modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated CD4(+) T cell alloactivation.J Exp Med 190555–566 (1999).CrossRefGoogle Scholar
  40. 40.
    K. D. Forsyth, K. Y. Chua, V. Talbot, and W. R. Thomas, Expression of the Leucocyte Common Antigen CD45 by endotheliumJ Immunol 1503471–3477 (1993).PubMedGoogle Scholar
  41. 41.
    V. Desmet, Emy of the liver and intrahebryologpatic biliary tract, and an overview of malformations of the bile duct. In: OxfordTextbook ofClinical Hepatology, edited by N. McIntyre, J.P. Benhamou, J.BircherandJ. Rodes(Oxford, UK Oxford, 1991), pp. 497Google Scholar
  42. 42.
    G. Machiarelli, S. Makabe, and P. Motta, Scanning electron microscopy of adult and fetal liversinusoidsIn:Sinusoids in Human Liver: Health and Diseaseedited by P. Biolac-Sage, and C.Balabaud(Rijswijk, The Netherlands, Kupfer Cell Foundation, 1988) pp.63Google Scholar
  43. 43.
    Steinhoff G, M Behrend, B Schrader, AM Duijvestijn and K Wonigeit, Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia. Lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-I, ICAM-I. ICAM-2, and LFA-3Am J Pathol 142481–488 (1993).PubMedGoogle Scholar
  44. 44.
    M. Garcia-Barcina. B. Lukomska, W. Gawron, M. Winnock, F. Vidal-Vanaclocha, P. Bioulac-Sage, C. Balabaud, and W. Olszewski, Expression of cell adhesion molecules on liver-associated lymphocytes and their ligands on sinusoidal lining cells in patients with benign or malignant liver disease.Am J Pathol 1461406–1413 (1995).Google Scholar
  45. 45.
    A. W. Lohse, P. A. Knolle, K. Bilo, A. Uhrig, C. Waldmann, M. Ibe, E. Schmitt, G. Gerken, and K.. H Meyer Zum Buschenfelde, Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cellsGastroenterology 1101175–1181 (1996).PubMedCrossRefGoogle Scholar
  46. 46.
    P. A. Knolle. A. Uhrig. S. Hegenbarth, E. Loser, E. Schmitt, G. Gerken, and A. W. Lohse, IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules.Clin Exp Immunol 114427–433 (1998).PubMedCrossRefGoogle Scholar
  47. 47.
    P. A. Knolle, and G. Gerken. Local control of the immune response in the liverImmunol Rev 17421–34 (2000).PubMedCrossRefGoogle Scholar
  48. 48.
    P. A. Knolle, and A. Limmer, Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cellsTrends Immunol 22432–437 (2001).PubMedCrossRefGoogle Scholar
  49. 49.
    J. Y. Scoazec, and G. Feldmann, In situ immunophenotyping study of endothelial cells of the human hepatic sinusoid: results and functional implicationsHepatology 14789–797 (1991).PubMedCrossRefGoogle Scholar
  50. 50.
    A. Limmer, J. Ohl, C. Kurts, H. G. Ljunggren, Y. Reiss, M. Groettrup, F. Momburg, B. Arnold, and P. A. Knolle, Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell toleranceNat Med 6.348–1354 (2000).Google Scholar
  51. 51.
    C. Page, M. Rose, M. Yacoub. andR.Pigott. Antigenic heterogeneity of vascular endothelium.Am J Pathol 141673–683 (1992).PubMedGoogle Scholar
  52. 52.
    D. M. Briscoe, L. E. DesRoches. J. M. Kiely, J. A. Lederer, and A. H. Lichtman, Antigen-dependent activation of T helper cell subsets by endotheliumTransplantation 59.1638–1641 (1995).PubMedGoogle Scholar
  53. 53.
    D. M. Briscoe, P. Ganz, S. I. Alexander, R. J. Melder, R. K. Jain, R. S. Cotran, and A. H. Lichtman, The problem of chronic rejection: influence of leukocyte-endothelial interactions.Kidney Int Suppl 5852227 (1997).Google Scholar
  54. 54.
    I. Van Rhijn, L. H. Van den Berg, W. M. Bosboom, H. G. Otten, and T. Logtenberg, Expression of accessory molecules for T-cell activation in peripheral nerve of patients with CIDP and vasculitic neuropathyBrain 1232020–2029 (2000).PubMedCrossRefGoogle Scholar
  55. 55.
    C. Zietz, B. Hotz, M. Sturzl, E. Rauch, R. Penning, and U. Lohrs, Aortic endothelium in HIV-1 infection: chronic injury, activation, and increased leukocyte adherenceAm J Pathol 149.1887–1898 (1996).PubMedGoogle Scholar
  56. 56.
    W. Koster Endarteritis and arteritisBerl Klin Wochenschr 13.454–57 (1876).Google Scholar
  57. 57.
    N. Kumamoto, Y. Nakashima. K. Suieshi, Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significanceHum Pathol 26450–56 (1995).PubMedCrossRefGoogle Scholar
  58. 58.
    E. O’Brien, M. R. Garwin, R. Dev, D. K. Stewart, T. Hinohara, J. B. Simpson, and S. M. Schwanz, Angiogenesis in human coronary atherosclerotic plaquesAm J Parhol 145883–93 (1994).Google Scholar
  59. 59.
    Y. Zhang, W. J. Cliff, G. I. Schoefl, and G.Higgins, Immunohistochemical study of intimai microvessels in coronary atherosclerosisAm J Pathol. 143164–172 (1993)Google Scholar
  60. 60.
    E. Groszek, and S. M. Grundy, The possible role of the arterial microcirculation in the pathogenesis of atherosclerosisJ Chron Dis 33679–684 (1980)PubMedCrossRefGoogle Scholar
  61. 61.
    K. D. O’Brien, T. O. McDonald, A. Chait, M. D. Allen, C. E. Alpers, Neovascular expression of E-selectin, intercellular adhesion molecule-1. and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimai leucocyte contentCirculation 93672–82 (1996).PubMedCrossRefGoogle Scholar
  62. 62.
    A. C. Barger, R. Beeuwkes, L. L. Lainey et al, Vasa vasorum aand neovascularization of human coronary arteries: a possible role in the pathophysiology of atherosclerosisN Eng J Med 310175–177 (1984).CrossRefGoogle Scholar
  63. 63.
    J. A. Fryer, P. C. Myers, and M. Appleberg, Carotid intraplaque heamorrhage: the significance of neovascularityJ Vasc Surg6, 341–9 (1987).PubMedGoogle Scholar
  64. 64.
    M. Jeziorska, and D. E. Wooley, Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteriesJ Pathol. 188189–196 (1999).PubMedCrossRefGoogle Scholar
  65. 65.
    A. N. Tenaglia, A. G. Peters, M. H. Sketch, and B. H. Annex. Neovascularization in atherectomy specimens from patients with unstable angina:implications for pathogenesis of unstable anginaAm Heart J 13510–14.(1998).PubMedCrossRefGoogle Scholar
  66. 66.
    M. J. Mc Canhy, I. M. Loftus, M. M. Thompson. I. Jones, N. J. M. London, P. R. F. Bell. R. Naylor, and N. P. J. Prindle, Angiogenesis and the atherosclerootic carotid plaque: an association between symptomatology and plaque morphologyJ Vasc Surg22, 261–8 (1999).Google Scholar
  67. 67.
    M. Jeziorska, and D. E. Wooley, Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteriesJ Pathol 188189–196 (1999).PubMedCrossRefGoogle Scholar
  68. 68.
    M. J. Tsapogas, G. A. Streling, and M. B. Girolami, Study on the organization of experimental thrombiAngiology 18825–832 (1967).Google Scholar
  69. 69.
    K. Prathap, Surface lining cells of healing thrombi in rat femoral veins, an electron-microscopic studyJ Pathol 1071–8 (1972).PubMedCrossRefGoogle Scholar
  70. 70.
    H. J. Leu, W. Feigl, and M. Susani, Angiogenesis from mononuclear cells in thrombiVirchows Arch A 4115–14 (1987).CrossRefGoogle Scholar
  71. 71.
    P. J. Polverini, and S. J. Leibovich, Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophagesLab Invest 51635–642 (1984).PubMedGoogle Scholar
  72. 72.
    B. Fernandez Pujol, F. C. Lucibello. U. M. Gehling, K. Lindemann. N. Weidner, M. L. Zuzarte1.Adamkiewicz, H. P. Elsasser, R. Muller, and K. Havemann. Endothelial-like cells derived from human CDI4 positive monocytesDifferentiation 65287–300 (2000).CrossRefGoogle Scholar
  73. 73.
    A. Schmeisser, C. D. Garlichs, H. Zhang, S. Eskafi, C. Graffy, J. Ludwig. R. H. Strasser, and W. G. Daniel, Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditionsCardiovasc Res 49.671–680 (2001).PubMedCrossRefGoogle Scholar
  74. 74.
    M. Harraz, C. Jiao, H. D. Hanlon, R. S. Hartley, and G. C. Schatteman. Cd34(-) blood-derived human endothelial cell progenitorsStem Cells 19304–312 (2001).PubMedCrossRefGoogle Scholar
  75. 75.
    B. Fernandez Pujol, F. C. Lucibello, M. Zuzarte. P. Lutjens, R. Muller. and K. Havemann, Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cellsEur J Cell Biol 8099–110 (2001).PubMedCrossRefGoogle Scholar
  76. 76.
    G. Hausser, B. Ludewig, H. R. Gelderblom, Y. Tsunetsugu-Yokota, K. Akagawa, and A. Meyerhans, Monocyte-derived dendritic cells represent a transient stage of differentiation in the myeloid lineageImmunobiology 5534–542 (1997).CrossRefGoogle Scholar
  77. 77.
    F. Sallusto, and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.J Exp Med 4.1109–1118 (1994).CrossRefGoogle Scholar
  78. 78.
    L. J. Zhou, and T. F. Tedder, CDI4+ blood monocytes can differentiate into functionally mature CD83+ dendritic cellsProc Nail Acad Sci (US A) 93, 2588–2592 (1996).CrossRefGoogle Scholar
  79. 79.
    D. I. Gabrilovich, H. L. Chen, K. R. Girgis, H. T. Cunningham, G. M. Meny, S. Nadaf, D. Kavanaugh, and D. P. Carbone, Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cellsNat Med 10.1096–1103. (1996).CrossRefGoogle Scholar
  80. 80.
    T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr. D. P. Carbone, and D. I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cellsJ Immunol 1601224–1232 (1998).PubMedGoogle Scholar
  81. 81.
    J. E. Ohm, M. R. Shurin, C. Esche, M. T. Lotze, D. P. Carbone, and D. I. Gabrilovich, Effect of vascularendothelial growth factor and FLT3 ligand on dendritic cell generation in vivoJ Immunol 1633260–3268 (1999).Google Scholar
  82. 82.
    A. F. Valledor, F. E. Borras. M. Cullell-Young. and A. Celada, Transcription factors that regulate monocyte/macrophage differentiation.J Leukoc Bio63, 405–417 (1998).Google Scholar
  83. 83.
    A. Kappet, V. Ronicke, A. Damen. I. Flamme. W. Risau. and G. Breier, Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic miceBlood 934284–4292 (1999).Google Scholar
  84. 84.
    A. Kappe), T. M. Schlaeger, I. Flamme, S. H. Orkin, W. Risau, and G. Breier, Role of SCUTal-1, GATA, and ets transcription factor binding sites for the regulation of flk-1 expression during murine vascular developmentBlood 963078–3085 (2000).Google Scholar
  85. 85.
    C. D. Baroni, D. Vitolo, D. Remotti, A. Biondi. F. Pezzella, L. P. Ruco, and S. Uccini, Immunohistochemical heterogeneity of macrophage subpopulations in human lymphoid tissuesHis opathologv 111029–1042 (1987).Google Scholar
  86. 86.
    P. J. Buckley, S. A. Dickson, and W. S. Walker. Human splenic sinusoidal lining cells express antigens associated with monocytes, macrophages. endothelial cells, and T lymphocytesJ Immuno l 1342310–2315 (1985).Google Scholar
  87. 87.
    S. Uccini. M. C. Sirianni, L. Vincenzi, S. Topino, A. Stoppacciaro, I. Lesnoni La Parola, M. Capuano, C. Masini, D. Cerimele, M. Cella. A. Lanzavecchia. P. Allavena. A. Mantovani, C. D. Baroni, and L. P. Ruco, Kaposi’s sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi’s sarcoma patientsAm J Pathol 150929–938 (1997).PubMedGoogle Scholar
  88. 88.
    M. Skobe, L. F. Brown. K. Tognazzi, R. K. Ganju. B. J. Dezube, K. Alitalo, and M. Detmar, Vascular endothelial growth factor-C (VEGF-C) and its receptors KDR and fit-4 are expressed in AIDS-associated Kaposi’s sarcomaJ Invest Dermatol 1131047–1053 (1999).PubMedCrossRefGoogle Scholar
  89. 89.
    S. Marchio, L. Primo, M. Pagano, G. Palestro, A. Albini, T. Veikkola, I. Cascone, K. Alitalo, and F. Bussolino, Vascular endothelial growth factor-C stimulates the migration and proliferation of Kaposi’s sarcoma cellsJ Bin! Chem 274.27617–27622 (1999).CrossRefGoogle Scholar
  90. 90.
    W. Schaper, and W. D. Ito, Molecular mechanisms of coronary collateral vessel growth, Cire Res79911–919 (1996).CrossRefGoogle Scholar
  91. 91.
    N. 1. Moldovan, P. J. Goldschmidt-Clermont, J. Parker-Thornburg, S. D. Shapiro. and P. E. Kolattukudy, Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardiumCire Res 87378–384. (2000).CrossRefGoogle Scholar
  92. 92.
    R. D. Leek, C. E. Lewis, R. Whitehouse, M. Greenall, J. Clarke, and A. L. Harris, Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinomaCancer Res 56.4625–4629 (1996).PubMedGoogle Scholar
  93. 93.
    R. D. Leek, R. J. Landers, A. L. Harris, and C. E. Lewis, Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breastBr J Cancer 79991–995 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Alexander Schmeisser
  • Christiane Graffy
    • 2
  • Werner G. Daniel
    • 2
  • Ruth H. Strasser
    • 1
  1. 1.Department of Cardiology Medical Clinic IIUniversity of Technology DresdenDresdenGermany
  2. 2.Medical Clinic IIFriedrich Alexander UniversityErlangenGermany

Personalised recommendations