In Vitro Transformation of Monocytes and Dendritic Cells into Endothelial like Cells

  • Klaus Havemann
  • Beatriz F. Pujol
  • Jürgen Adamkiewicz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 522)

Summary

Our in vitro data indicate that peripheral blood monocytes or monocyte-derived immature dendritic cells under appropriate culture conditions transdifferentiate into endothelial-like cells (ELC), which are characterized by the expression of endothelial markers and the formation of tube-like structures. Dependent on the culture conditions a mixed macrophage/endothelial or an endothelial phenotype could be induced. A similar pattern of development could be seen in CD14+ monocyte-derived ELC and ELC grown from CD34+ precursor cells or from dendritic cells generated from CD34+ cells. These in vitro data suggest that monocytes are precursors of different subgroups of endothelial cells and that the formation of endothelial cells from CD34+ progenitor cells follows a similar pathway possibly via the monocyte and/or the immature dendritic cell.

Keywords

Blood Monocyte Endothelial Marker Vascular Endothelial Cell Growth Factor Angiogenic Growth Factor Endothelial Cell Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R, Li. T, Witzenbichler, B.. Schatteman, G. and Isner J. M., 1997, Isolation of putative progenitor endothelial cells for angiogenesis, Science 275: 964.PubMedCrossRefGoogle Scholar
  2. Aschoff, L., 1924, Das reticuloendotheliale System, Erg. Inn. Med. Kinderheilk. 26: 1.Google Scholar
  3. Blau, H. M., Brazelton, T. R. and Weimann J. M., 2001, The evolving concept of a stem cell: entity or function, Cell 105: 829.PubMedCrossRefGoogle Scholar
  4. Bouwens, L., 1998, Transdifferentiation versus stem cell hypothesis for the regeneration of islet beta-cells in the pancreas, Microre Res Tech 43: 332.CrossRefGoogle Scholar
  5. Harraz, M., liao, C., Hanlon, H. D., Hartley R. S. and Schatteman G. C.. 2001, CD34(-) blood derived human endothelial cell progenitors, Stem Cells 19: 304.Google Scholar
  6. Heinemann, D. E., Siggelkow, H. Ponce, L. M. Viereck Y. Wiese K. G. and Peters J. H. 2000. Alkaline phosphatase expression during monocyte differentiation. Overlapping markers as a link between monocytic cells, dendritic cells. osteoclasts and osteoblasts, lmmunohiology 202: 68.CrossRefGoogle Scholar
  7. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver M., Kearney M, Li T, Isner J. M. and Asahara T. 2000, Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularisation, Proc Nat A Sci USA 97: 3422.CrossRefGoogle Scholar
  8. Krenacs, T., and Rosendaal, M., 1995, Immunohistochemical detection of gap junctions in human lymphoid tissue: connexin 43 in follicular dendritic and lymphoendothelial cells, J Histochem Cytochem 43: 1125.PubMedCrossRefGoogle Scholar
  9. Leek R. D., Lewis C. E. and Harris A. L. 1997, The role of macrophages in tumor angiogenesis, in: Tumor Angiogenesis, R. Bicknell, C. E. Lewis and N. Ferrara, eds. Oxford University Press. Oxford, pp. 81–91.Google Scholar
  10. McDouall, R. M., Yacoub, M., and Rose M. L., 1996, Isolation, culture and characterisation of MHC class II-positive microvascular endothelial cells from the human heart, Mierovase Res 51: 137.CrossRefGoogle Scholar
  11. Moldovan, N. J., Goldschmidt-Clermont, P. J., Parker-Thornburg, J., Shapiro S. D. and Kolattukudy P. E. 2000, Contribution of monocytes/macrophages to compensatory neovascularisation. The drilling of metalloelastasepositive tunnels in ischemic myocardium, Cire Res 87:378.CrossRefGoogle Scholar
  12. Mutin, M., Dignat-George, F., and Sampol, J., 1997, Immunologic phenotype of cultured endothelial cells: quantitative analysis of cell surface molecules, Tissue Antigens 50: 449.PubMedCrossRefGoogle Scholar
  13. Nicholson, G. C., Malakellis M., Collier F. M., Cameron P. K., Holloway W. R., Gough, T. J., Gregorio-King C., Kirkland, M. A., and Meyers, D. E. 2000. Induction of osteoclasts from CDI4-positive human peripheral blood mononuclear cells by receptor activator of nuclear factor kappa B ligand (RANKL), Clin Sci 99: 133.PubMedCrossRefGoogle Scholar
  14. Paavonen, K., Puolakkasinen, P., Jussila, L., Jahkola, T., and Alitalo, K., 2000.Vascular endothelial cell growth factor receptor-3 in lymphangiogenesis and wound healing, Am J Pathol 156: 1499.PubMedCrossRefGoogle Scholar
  15. Pujol, B. F., Lucibello, F. C., Gehling, U. M., Lindemann, K., Weidner, N., Zuzarte, M. L., Adamkiewicz, J. Elsässer H. P., Müller R., and Havemann, K. 2000a, Endothelial-like cells derived from CD I4 positive monocytes, Differentiation 65: 287.CrossRefGoogle Scholar
  16. Pujol, B. F., Lucibello, F. C., Zuzarte, M. L., Lütjens, P, Müller, R. and Havemann, K. 2001, Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol 80: 99.CrossRefGoogle Scholar
  17. Pujol, B. F., Lucibello, F. C., Zuzarte, M. L., Müller, R. and Havemann, K. 2000b. Dendritic cells (DC) generated from hematopoietic progenitor cells express endothelial cell markers and can be converted into endothelial like cells (ELC) in the presence of angiogenic growth factors. Proc Am A Cane R 41: 116.Google Scholar
  18. Schmeisser, A., Garlichs, C. D., Zhang, H., Eskafi, S., Graffy, C., Ludwig, J., Strasser, R. H. and Daniel, W. G. 2001, Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in matrigel under angiogenic conditions, Curdiorase Res 49: 671.CrossRefGoogle Scholar
  19. Swerlick, R. A., Lee, K. H., Wick, T.M. and Lawley, T. J. 1992. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro, J Immunol 148: 78.PubMedGoogle Scholar
  20. Uccini, S., Sirianni, M. C., Vincenzi, L., Topino, S., Stoppacciaro, A., Lesnoni La Parola, I., Capuano, M., Masini, C., Cerimele, D., Cella, M., Lanzavecchia, A., Allavena, P., Mantovani, A., Baroni, C. D. and Ruco, L. P. 1997, Kaposi’s sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi’s sarcoma patients. Ant J Puthol 150: 929.Google Scholar
  21. Zhou, L. J., and Tedder, T. F., 1996. CD 14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells, Proc Natl Acad Sei USA 93: 2588.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Klaus Havemann
  • Beatriz F. Pujol
  • Jürgen Adamkiewicz
    • 1
  1. 1.Institute of Molecular Biology and Tumor ResearchPhilipps UniversityMarburgGermany

Personalised recommendations