Skip to main content

Role of the Plasminogen and MMP Systems in Wound Healing

  • Chapter
Plasminogen: Structure, Activation, and Regulation

Abstract

Wound healing involves cell migration and tissue remodeling, which require degradation of extracellular matrix (ECM). Two proteolytic systems, the fibrinolytic (plasminogen/plasmin) and matrix metalloproteinase (MMP) systems can degrade most ECM components. Plasmin can only degrade some components of the ECM directly, such as laminin and flbronectin, whereas other components such as elastin and collagen are degraded by MMPs. The plasminogen/plasmin system can, however, play a role in the activation of several proMMPs. Thus, in concert, both systems can degrade the ECM. In this chapter we will review the contribution of both proteolytic systems to neointima formation and arterial restenosis after vascular injury, allograft transplant stenosis, skin wound healing, and myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoyagi, M., Yamamoto, M., Azuma, H., Nagashima, G., Niimi, Y., Tamaki, M., Hirakawa, K., and Yamamoto, K. (1998). Immunolocalization of matrix metalloproteinases in rabbit carotid arteries after balloon denudation. Histochem. Cell Biol. 109, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Baramova, E.N., Bajou, K., Remacle, A., L’Hoir, C., Krell, H.W., Weidle, U.H., Noel, A., and Foidart, J.M. (1997). Involvement of PA/plasmin system in the processing of proMMP-9 and in the second step of proMMP-2 activation. FEBS Lett. 405, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Bendeck, M.P., Zempo, N., Clowes, A.W., Galardy, R.E., and Reidy, M.A. (1994). Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ. Res. 75, 539–545.

    Article  PubMed  CAS  Google Scholar 

  • Bini, A., Itoh, Y., Kudryk, B.J., and Nagase, H. (1996). Degradation of cross-linked fibrin by matrix metalloproteinase 3 (stromelysin 1): Hydrolysis of the gamma Gly 404-Ala 405 peptide bond. Biochemistry 35, 13056–13063.

    Article  PubMed  CAS  Google Scholar 

  • Bini, A., Wu, D., Schnuer, J., and Kudryk, B.J. (1999). Characterization of stromelysin-1 (MMP-3), matrilysin (MMP-7), and membrane type 1 matrix metalloproteinase (MT1-MMP) derived fibrin(ogen) fragments D-dimer and D-like monomer: NH2-terminal sequences of late-stage digest fragments. Biochemistry 38, 13928–13936.

    Article  PubMed  CAS  Google Scholar 

  • Birkedal-Hansen, H., Moore, W.G., Bodden, M.K., Windsor, L.J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J.A. (1993). Matrix metalloproteinases: A review. Crit. Rev. Oral Biol. Med. 4, 197–250.

    PubMed  CAS  Google Scholar 

  • Blasi, F. (1993). Urokinase and urokinase receptor: A paracrine/autocrine system regulating cell migration and invasiveness. BioEssays 15, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Brew, K., Dinakarpandian, D., and Nagase, H. (2000). Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochim. Biophys. Acta 1477, 267–283.

    Article  PubMed  CAS  Google Scholar 

  • Bugge, T.H., Kombrinck, K.W., Flick, M.J.„ Daugherty, C.C., Danton, M.J., and Degen, J.L. (1996). Loss of fìbrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 87, 709–719.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P. and Collen, D. (1998). Development and disease in proteinase-deficient mice: Role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb. Res. 91, 255–285.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P., Moons, L., Stassen, J.-M., De Mol, M., Bouché, A., van den Oord, J.J., Kockx, M., and Collen, D. (1997a). Vascular wound healing and neointima formation induced by perivascular electric injury in mice. Am. J. Pathol. 150, 761–776.

    PubMed  CAS  Google Scholar 

  • Carmeliet, P., Moons, L., Ploplis, V., Plow, E., and Collen, D. (1997b). Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J. Clin. Invest. 99, 200–208.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P., Moons, L., Herbert, J.-M., Crawley, J., Lupu, F., Lijnen, R., and Collen, D. (1997c). Urokinase but not tissue plasminogen activator mediates arterial neointima formation in mice. Circ. Res. 81, 829–939.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P., Moons, L., Lijnen, R., Janssens, S., Lupu, F., Collen, D., and Gerard, R.D. (1997d). Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation. A gene targeting and gene transfer study in mice. Circulation 96, 3180–3191.

    Article  PubMed  CAS  Google Scholar 

  • Celentano, D.C. and Frishman, W.H. (1997). Matrix metalloproteinases and coronary artery disease: A novel therapeutic target. J. Clin. Pharmacol. 150, 761–776.

    Google Scholar 

  • Cleutjens, J.P.M., Kandala, J.C., Guarda, E., Guntaka, R.V., and Weber, K.T. (1995). Regulation of collagen degradation in the rat myocardium after infarction. J. Mol. Cell Cardiol. 27, 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  • Clowes, A.W., Clowes, M.M., Au, Y.P., Reidy, M.A., and Belin, D. (1990). Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ. Res. 67, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Coker, M.L., Thomas, C.V., Clair, M.J., Hendrick, J.W., Kombrach, R.S., Galis, Z.S., and Spinale, F.G. (1998). Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am. J. Physiol. 274, H1516–H1523.

    PubMed  CAS  Google Scholar 

  • Collen, D. and Lijnen, H.R. (1991). Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78, 3114–3124.

    PubMed  CAS  Google Scholar 

  • Declerck, P.J., Juhan-Vague, I., Felez, J., and Wiman, B. (1994). Pathophysiology of fibrinolysis. J. Int. Med. 236, 425–432.

    Article  CAS  Google Scholar 

  • Dollery, C.M., McEwan, J.R., and Henney, A.M. (1995). Matrix metalloproteinases and cardiovascular disease. Circ. Res. 11, 863–868.

    Article  Google Scholar 

  • Dong, Z., Kumar, R., Yang, X., and Fidler, I.J. (1997). Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–810.

    Article  PubMed  CAS  Google Scholar 

  • Eeckhout, Y. and Vaes, G. (1977). Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem. J. 166, 21–31.

    PubMed  CAS  Google Scholar 

  • Forough, R., Koyama, N., Hasenstab, D., Lea, H., Clowes, M., Nikkari, S.T., and Clowes, A.W. (1996). Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ. Res. 79, 812–820.

    Article  PubMed  CAS  Google Scholar 

  • Galis, Z.S., Sukhova, G.K., Kranzhöfer, R., Clark, S., and Libby, P. (1995). Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc. Natl. Acad. Sci. USA 92, 402–406.

    Article  PubMed  CAS  Google Scholar 

  • George, S.J., Johnson, J.L., Angelini, G.D., Newby, A.C., and Baker, A.H. (1998). Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein. Hum. Gene Ther. 9, 867–877.

    Article  PubMed  CAS  Google Scholar 

  • Halpert, I., Sires, U.I., Roby, J.D., Potter-Perigo, S., Wight, T.N., Shapiro, S.D., Welgus, H.G., Wickline, S.A., and Parks, W.C. (1996). Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc. Natl. Acad. Sci. USA 93, 9748–9753.

    Article  PubMed  CAS  Google Scholar 

  • Hasenstab, D., Forough, R., and Clowes, A.W. (1997). Plasminogen activator inhibitor type 1 and tissue inhibitor of metalloproteinases-2 increase after arterial injury in rats. Circ. Res. 80, 490–496.

    Article  PubMed  CAS  Google Scholar 

  • He, C.S., Wilhelm, S.M., Pentland, A.P., Manner, B.L., Grant, G.A., Eisen, A.Z., and Goldberg, G.I. (1989). Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc. Natl. Acad. Sci. USA 86, 2632–2636.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt, R. and Danø, K. (1996). Stromal cell expression of components of matrix-degrading protease systems in human cancer. Enzyme Protein 49, 163–173.

    PubMed  CAS  Google Scholar 

  • Heymans, S., Luttun, A., Nuyens, D., Theilmeier, G., Creemers, E., Moons, L., Dyspersin, G.D., Cleutjens, J.P.M., Shipley, M., Angellillo, A., Levi, M., Niibe, O., Baker, A., Keshet, E., Lupu, F., Herbert, J.-M., Smiths, F.J.M., Shapiro, S.D., Baes, M., Borgers, M., Collen, D., Daemen, M.J.A.P., and Carmeliet, P. (1999). Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Med. 5, 1135–1142.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry, E., Newman, K.M., Gandhi, R.H., Nackman, G.B., Halpern, V., Wishner, S., Scholes, J.V., and Tilson, M.D. (1993). Demonstration of interstitial collagenase in abdominal aortic aneurysm disease. J. Surg. Res. 54, 571–574.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, C.L. and Reidy, M.A. (1992). The role of plasminogen activation in smooth muscle cell migration after arterial injury. Ann. N. Y. Acad. Sci. 667, 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Kenagy, R.D., Vergel, S., Mattsson, E., Bendeck, M., Reidy, M.A., and Clowes, A.W. (1996). The role of plasminogen, plasminogen activators, and matrix metalloproteinases in primate arterial smooth muscle cell migration. Arterioscler. Thromb. Vasc. Biol. 16, 1373–1382.

    Article  PubMed  CAS  Google Scholar 

  • Kenagy, R.D., Hart, C.E., Stetler-Stevenson, W.G., and Clowes, A.W. (1997). Primate smooth muscle cell migration from aortic explants is mediated by endogenous platelet-derived growth factor and basic fibroblast growth factor acting through matrix metalloproteinases 2 and 9. Circulation 96, 3555–3560.

    Article  PubMed  CAS  Google Scholar 

  • Knoepfler, P.S., Bloor, C.M., and Carroll, S.M. (1995). Urokinase plasminogen activator activity is increased in the myocardium during coronary artery occlusion. J. Mol. Cell. Cardiol. 27, 1317–1324.

    Article  PubMed  CAS  Google Scholar 

  • Libby, P. (1995). Molecular bases of the acute coronary syndromes. Circulation 91, 2844–2850.

    Article  PubMed  CAS  Google Scholar 

  • Lijnen, H.R. (2001). Plasmin and matrix metalloproteinases in vascular remodeling. Thromb. Haemost. 86, 324–333.

    PubMed  CAS  Google Scholar 

  • Lijnen, H.R. and Collen, D. (1995). Mechanisms of physiological fibrinolysis. Baillière’s Clin. Haematol. 8, 277–290.

    Article  CAS  Google Scholar 

  • Lijnen, H.R., Silence, J., Van Hoef, B., and Collen, D. (1998a). Stromelysin-1 (MMP-3)-independent gelatinase expression and activation in mice. Blood 91, 2045–2053.

    PubMed  CAS  Google Scholar 

  • Lijnen, H.R., Ugwu, F., Bini, A., and Collen, D. (1998b). Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37, 4699–4702.

    Article  PubMed  CAS  Google Scholar 

  • Lijnen, H.R., Ugwu, F., Rio, M.C., and Collen, D. (1998c). Plasminogen/plasmin and matrix metalloproteinase system function in mice with targeted inactivation of stromelysin-3 (MMP-11). Fibrinol. Proteol. 12, 155–164.

    Article  CAS  Google Scholar 

  • Lijnen, H.R., Van Hoef, B., Lupu, F., Moons, L., Carmeliet, P., and Collen, D. (1998d). Function of the plasminogen/plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes. Arterioscler. Thromb. Vasc. Biol. 18, 1035–1045.

    Article  PubMed  CAS  Google Scholar 

  • Lijnen, H.R., Lupu, F., Moons, L., Carmeliet, P., Goulding, D., and Collen, D. (1999a). Temporal and topographic matrix metalloproteinase expression after vascular injury in mice. Thromb. Haemost. 81, 799–807.

    PubMed  CAS  Google Scholar 

  • Lijnen, H.R., Van Hoef, B., Soloway, P., and Collen, D. (1999b). Tissue inhibitor type 1 of matrix metalloproteinases (TIMP-1) impairs arterial neointima formation after vascular injury in mice. Circ. Res. 85, 1186–1191.

    Article  PubMed  CAS  Google Scholar 

  • Lijnen, H.R., Van Hoef, B., Dewerchin, M., and Collen, D. (2000). α2-Antiplasmin gene deficiency in mice does not affect neointima formation after vascular injury. Arterioscler. Thromb. Vasc. Biol. 20, 1488–1492.

    Article  PubMed  CAS  Google Scholar 

  • Lovdahl, C., Thyberg, J., Cercek, B., Blomgren, K., Dimayuga, P., Kallin, B., and Hultgardh-Nilsson, A. (1999). Antisense oligonucleotides to stromelysin mRNA inhibit injury-induced proliferation of arterial smooth muscle cells. Histol. Histopathol. 14, 1101–1112.

    PubMed  CAS  Google Scholar 

  • Lund, L.R., Rømer, J., Bugge, T.H., Nielsen, B.S., Frandsen, T.L., Degen, J.L., Stephens, R.W., and Danø, K. (1999). Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J. 18, 4645–4656.

    Article  PubMed  CAS  Google Scholar 

  • Marcotte, P.A., Kozan, I.M., Dorwin, S.A., and Ryan, J.M. (1992). The matrix metalloproteinase pump-1 catalyzes formation of low molecular weight (pro)urokinase in cultures of normal human kidney cells. J. Biol. Chem. 267, 13803–13806.

    PubMed  CAS  Google Scholar 

  • Moons, L., Shi, V., Ploplis, V., Plow, E., Haber, E., Collen,, D., and Carmeliet, P. (1998). Reduced transplant arteriosclerosis in plasminogen deficient mice. J. Clin. Invest. 102, 1788–1797.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, H., Mitchell, R.N., Taylor, M.K., Hasegawa, S., Tilney, N.L., and Libby, P. (1997). Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J. Clin. Invest. 100, 550–557.

    Article  PubMed  CAS  Google Scholar 

  • Nagase, H. (1997). Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378, 151–160.

    PubMed  CAS  Google Scholar 

  • Nagase, H. and Woessner, J.F. Jr. (1999). Matrix metalloproteinases. J. Biol. Chem. 274, 21491–21494.

    Article  PubMed  CAS  Google Scholar 

  • Newman, K.M., Jean Claude, J., Li, H., Scholes, J.V., Ogata, Y., Nagase, H., and Tilson, M.D. (1994). Cellular localization of matrix metalloproteinase in the abdominal aortic aneurysm wall. J. Vasc. Surg. 20, 814–820.

    Article  PubMed  CAS  Google Scholar 

  • Ogata, Y., Enghild, J.J., and Nagase, H. (1992). Matrix metalloproteinase 3 (stromelysin) activates the precursor of the human matrix metalloproteinase 9. J. Biol. Chem. 267, 3581–3584.

    PubMed  CAS  Google Scholar 

  • Okada, Y., Gonoji, Y., Naka, K., Tomita, K., Nakanishi, I., Iwata, K., Yamashita, K., and Hayakawa, T. (1992). Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J. Biol. Chem. 267, 21712–21719.

    PubMed  CAS  Google Scholar 

  • Patterson, B.C. and Sang, Q.A. (1997). Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J. Biol. Chem. 272, 28823–28825.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, J.T., Rosebury, W.S., Robertson, A.W., Washington, R.A., Li, H., O’Brien, P.M., Sliskovic, D.R., Hallak, H., Uprichard, A.C.G., and Bocan, T.M.A. (1997). Matrix metalloproteinase inhibition blocks progression of heart failure. Circulation 96 (Suppl. I), I-520 (Abstract).

    Google Scholar 

  • Reidy, M.A., Irvin, C., and Lindner, V. (1996). Migration of arterial wall cells. Expression of plasminogen activators and inhibitors in injured rat arteries. Circ. Res. 78, 405–414.

    Article  PubMed  CAS  Google Scholar 

  • Robert, V., Besse, S., Sabri, A., Silvestre, J.S., Assayag, P., Nguyen, V.T., Swynghedauw, B., and Delcayre, C. (1997). Differential regulation of matrix metalloproteinases associated with aging and hypertension in the rat heart. Lab. Invest. 76, 729–738.

    PubMed  CAS  Google Scholar 

  • Rohde, L.E., Ducharme, A., Arroyo, L.H., Aikawa, M., Sukhova, G.H., Lopez-Anaya, A., McClure, K.F., Mitchell, P.G., Libby, P., and Lee, R.T. (1999). Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99, 3063–3070.

    Article  PubMed  CAS  Google Scholar 

  • Rømer, J., Lund, L.R., Eriksen, J., Ralfkiær, E., Zeheb, R., Gelehrter, T.D., Danø, K., Kristensen, P. (1991). Differential expression of urokinase-type plasminogen activator and its type-1 inhibitor during healing of mouse skin wounds. J. Invest. Dermatol. 97, 803–811.

    Article  PubMed  Google Scholar 

  • Rømer, J., Lund, L.R., Eriksen, J., Pyke, C., Kristensen, P., and Danø, K. (1994). The receptor for urokinase-type plasminogen activator is expressed by keratinocytes at the leading edge during re-epithelialization of mouse skin wounds. J. Invest. Dermatol. 102, 519–522.

    Article  PubMed  Google Scholar 

  • Rømer, J., Bugge, T.H., Pyke, C., Lund, L.R., Flick, M.J., Degen, J.L., and Danø, K. (1996). Impaired wound healing in mice with a disrupted plasminogen gene. Nature Med. 2, 287–292.

    Article  PubMed  Google Scholar 

  • Russel, M.E., Wallace, A.F., Hancock, W.W., Sayegh, M.H., Adams, D.H., Sibinga, N.E., Wyner, L.R., and Karnovsky, M.J. (1995). Upregulation of cytokines associated with macrophage activation in the Lewis-to-F344 rat transplantation model of chronic cardiac rejection. Transplantation 59, 572–578.

    Google Scholar 

  • Sakalihasan, N., Delvenne, P., Nusgens, B.V., Limet, R., and Lapiere, C.M. (1996). Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 24, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Spinale, F.G., Krombach, R.S., Coker, M.L., Mukherjee, R., Houck, W.V., Clair, M.J., Kribbs, S.B., Hebbar, L., and Peterson, J.T. (1997). Matrix metalloproteinase inhibition with congestive heart failure improves left ventricular geometry and pump function. Circulation 96 (Suppl. I), I–520 (Abstract).

    Google Scholar 

  • Suzuki, K., Enghild, J.J., Morodomi, T., Salvesen, G., and Nagase, H. (1990). Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29, 10261–10270.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C.V., Coker, M..L, Zellner, J.L., Handy, J.R., Crumbley, A.J. III, and Spinale, F.G. (1998). Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97, 1708–1715.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi, S.C., Kumar, S., Cassatt, S., and Parker, J.L. (1996). Temporal expression of extracellular matrix metalloproteinases and tissue plasminogen activator in the development of collateral vessels in the canine model of coronary occlusion. Can. J. Physiol. Pharmacol. 74, 983–995.

    PubMed  CAS  Google Scholar 

  • Ugwu, F., Van Hoef, B., Bini, A., Collen, D., and Lijnen, H.R. (1998). Proteolytic cleavage of urokinase-type plasminogen activator by stromelysin-1 (MMP-3). Biochemistry 37, 7231–7236.

    Article  PubMed  CAS  Google Scholar 

  • Ugwu, F., Lemmens, G., Collen, D., and Lijnen, H.R. (1999). Modulation of cell-associated plasminogen activation by stromelysin-1 (MMP-3). Thromb. Haemost. 82, 1127–1131.

    PubMed  CAS  Google Scholar 

  • Vassalli, J.D., Sappino, A.P., and Belin, D. (1991). The plasminogen activator/plasmin system. J. Clin. Invest. 88, 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  • Webb, K.E., Henney, A.M., Anglin, S., Humphries, S.E., and McEwan, J.R. (1997). Expression of matrix metalloproteinases and their inhibitor TIMP-1 in the rat carotid artery after balloon injury. Arterioscler. Thromb. Vasc. Biol. 17, 1837–1844.

    Article  PubMed  CAS  Google Scholar 

  • Zempo, N., Kenagy, R.D., Au, Y.P.T., Bendeck, M., Clowes, M.M., Reidy, M.A., and Clowes, A.W. (1994). Matrix metalloproteinases of vascular cells are increased in balloon-injured rat carotid artery. J. Vasc. Surg. 20, 209–217.

    Article  PubMed  CAS  Google Scholar 

  • Zempo, N., Koyama, N., Kenagy, R.D., Lea, H.J., and Clowes, AW. (1996). Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arterioscler. Thromb. Vasc. Biol. 16, 28–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lijnen, H.R., Collen, D. (2003). Role of the Plasminogen and MMP Systems in Wound Healing. In: Waisman, D.M. (eds) Plasminogen: Structure, Activation, and Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0165-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0165-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4949-5

  • Online ISBN: 978-1-4615-0165-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics