Role of the Plasminogen and MMP Systems in Wound Healing

  • H. Roger Lijnen
  • Désiré Collen


Wound healing involves cell migration and tissue remodeling, which require degradation of extracellular matrix (ECM). Two proteolytic systems, the fibrinolytic (plasminogen/plasmin) and matrix metalloproteinase (MMP) systems can degrade most ECM components. Plasmin can only degrade some components of the ECM directly, such as laminin and flbronectin, whereas other components such as elastin and collagen are degraded by MMPs. The plasminogen/plasmin system can, however, play a role in the activation of several proMMPs. Thus, in concert, both systems can degrade the ECM. In this chapter we will review the contribution of both proteolytic systems to neointima formation and arterial restenosis after vascular injury, allograft transplant stenosis, skin wound healing, and myocardial ischemia.


Plasminogen Activator Abdominal Aortic Aneurysm Neointima Formation Skin Wound Healing Active MMPs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoyagi, M., Yamamoto, M., Azuma, H., Nagashima, G., Niimi, Y., Tamaki, M., Hirakawa, K., and Yamamoto, K. (1998). Immunolocalization of matrix metalloproteinases in rabbit carotid arteries after balloon denudation. Histochem. Cell Biol. 109, 97–102.PubMedCrossRefGoogle Scholar
  2. Baramova, E.N., Bajou, K., Remacle, A., L’Hoir, C., Krell, H.W., Weidle, U.H., Noel, A., and Foidart, J.M. (1997). Involvement of PA/plasmin system in the processing of proMMP-9 and in the second step of proMMP-2 activation. FEBS Lett. 405, 157–162.PubMedCrossRefGoogle Scholar
  3. Bendeck, M.P., Zempo, N., Clowes, A.W., Galardy, R.E., and Reidy, M.A. (1994). Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ. Res. 75, 539–545.PubMedCrossRefGoogle Scholar
  4. Bini, A., Itoh, Y., Kudryk, B.J., and Nagase, H. (1996). Degradation of cross-linked fibrin by matrix metalloproteinase 3 (stromelysin 1): Hydrolysis of the gamma Gly 404-Ala 405 peptide bond. Biochemistry 35, 13056–13063.PubMedCrossRefGoogle Scholar
  5. Bini, A., Wu, D., Schnuer, J., and Kudryk, B.J. (1999). Characterization of stromelysin-1 (MMP-3), matrilysin (MMP-7), and membrane type 1 matrix metalloproteinase (MT1-MMP) derived fibrin(ogen) fragments D-dimer and D-like monomer: NH2-terminal sequences of late-stage digest fragments. Biochemistry 38, 13928–13936.PubMedCrossRefGoogle Scholar
  6. Birkedal-Hansen, H., Moore, W.G., Bodden, M.K., Windsor, L.J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J.A. (1993). Matrix metalloproteinases: A review. Crit. Rev. Oral Biol. Med. 4, 197–250.PubMedGoogle Scholar
  7. Blasi, F. (1993). Urokinase and urokinase receptor: A paracrine/autocrine system regulating cell migration and invasiveness. BioEssays 15, 105–111.PubMedCrossRefGoogle Scholar
  8. Brew, K., Dinakarpandian, D., and Nagase, H. (2000). Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochim. Biophys. Acta 1477, 267–283.PubMedCrossRefGoogle Scholar
  9. Bugge, T.H., Kombrinck, K.W., Flick, M.J.„ Daugherty, C.C., Danton, M.J., and Degen, J.L. (1996). Loss of fìbrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 87, 709–719.PubMedCrossRefGoogle Scholar
  10. Carmeliet, P. and Collen, D. (1998). Development and disease in proteinase-deficient mice: Role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb. Res. 91, 255–285.PubMedCrossRefGoogle Scholar
  11. Carmeliet, P., Moons, L., Stassen, J.-M., De Mol, M., Bouché, A., van den Oord, J.J., Kockx, M., and Collen, D. (1997a). Vascular wound healing and neointima formation induced by perivascular electric injury in mice. Am. J. Pathol. 150, 761–776.PubMedGoogle Scholar
  12. Carmeliet, P., Moons, L., Ploplis, V., Plow, E., and Collen, D. (1997b). Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J. Clin. Invest. 99, 200–208.PubMedCrossRefGoogle Scholar
  13. Carmeliet, P., Moons, L., Herbert, J.-M., Crawley, J., Lupu, F., Lijnen, R., and Collen, D. (1997c). Urokinase but not tissue plasminogen activator mediates arterial neointima formation in mice. Circ. Res. 81, 829–939.PubMedCrossRefGoogle Scholar
  14. Carmeliet, P., Moons, L., Lijnen, R., Janssens, S., Lupu, F., Collen, D., and Gerard, R.D. (1997d). Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation. A gene targeting and gene transfer study in mice. Circulation 96, 3180–3191.PubMedCrossRefGoogle Scholar
  15. Celentano, D.C. and Frishman, W.H. (1997). Matrix metalloproteinases and coronary artery disease: A novel therapeutic target. J. Clin. Pharmacol. 150, 761–776.Google Scholar
  16. Cleutjens, J.P.M., Kandala, J.C., Guarda, E., Guntaka, R.V., and Weber, K.T. (1995). Regulation of collagen degradation in the rat myocardium after infarction. J. Mol. Cell Cardiol. 27, 1281–1292.PubMedCrossRefGoogle Scholar
  17. Clowes, A.W., Clowes, M.M., Au, Y.P., Reidy, M.A., and Belin, D. (1990). Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ. Res. 67, 61–67.PubMedCrossRefGoogle Scholar
  18. Coker, M.L., Thomas, C.V., Clair, M.J., Hendrick, J.W., Kombrach, R.S., Galis, Z.S., and Spinale, F.G. (1998). Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am. J. Physiol. 274, H1516–H1523.PubMedGoogle Scholar
  19. Collen, D. and Lijnen, H.R. (1991). Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78, 3114–3124.PubMedGoogle Scholar
  20. Declerck, P.J., Juhan-Vague, I., Felez, J., and Wiman, B. (1994). Pathophysiology of fibrinolysis. J. Int. Med. 236, 425–432.CrossRefGoogle Scholar
  21. Dollery, C.M., McEwan, J.R., and Henney, A.M. (1995). Matrix metalloproteinases and cardiovascular disease. Circ. Res. 11, 863–868.CrossRefGoogle Scholar
  22. Dong, Z., Kumar, R., Yang, X., and Fidler, I.J. (1997). Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–810.PubMedCrossRefGoogle Scholar
  23. Eeckhout, Y. and Vaes, G. (1977). Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem. J. 166, 21–31.PubMedGoogle Scholar
  24. Forough, R., Koyama, N., Hasenstab, D., Lea, H., Clowes, M., Nikkari, S.T., and Clowes, A.W. (1996). Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ. Res. 79, 812–820.PubMedCrossRefGoogle Scholar
  25. Galis, Z.S., Sukhova, G.K., Kranzhöfer, R., Clark, S., and Libby, P. (1995). Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc. Natl. Acad. Sci. USA 92, 402–406.PubMedCrossRefGoogle Scholar
  26. George, S.J., Johnson, J.L., Angelini, G.D., Newby, A.C., and Baker, A.H. (1998). Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein. Hum. Gene Ther. 9, 867–877.PubMedCrossRefGoogle Scholar
  27. Halpert, I., Sires, U.I., Roby, J.D., Potter-Perigo, S., Wight, T.N., Shapiro, S.D., Welgus, H.G., Wickline, S.A., and Parks, W.C. (1996). Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc. Natl. Acad. Sci. USA 93, 9748–9753.PubMedCrossRefGoogle Scholar
  28. Hasenstab, D., Forough, R., and Clowes, A.W. (1997). Plasminogen activator inhibitor type 1 and tissue inhibitor of metalloproteinases-2 increase after arterial injury in rats. Circ. Res. 80, 490–496.PubMedCrossRefGoogle Scholar
  29. He, C.S., Wilhelm, S.M., Pentland, A.P., Manner, B.L., Grant, G.A., Eisen, A.Z., and Goldberg, G.I. (1989). Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc. Natl. Acad. Sci. USA 86, 2632–2636.PubMedCrossRefGoogle Scholar
  30. Hewitt, R. and Danø, K. (1996). Stromal cell expression of components of matrix-degrading protease systems in human cancer. Enzyme Protein 49, 163–173.PubMedGoogle Scholar
  31. Heymans, S., Luttun, A., Nuyens, D., Theilmeier, G., Creemers, E., Moons, L., Dyspersin, G.D., Cleutjens, J.P.M., Shipley, M., Angellillo, A., Levi, M., Niibe, O., Baker, A., Keshet, E., Lupu, F., Herbert, J.-M., Smiths, F.J.M., Shapiro, S.D., Baes, M., Borgers, M., Collen, D., Daemen, M.J.A.P., and Carmeliet, P. (1999). Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Med. 5, 1135–1142.PubMedCrossRefGoogle Scholar
  32. Irizarry, E., Newman, K.M., Gandhi, R.H., Nackman, G.B., Halpern, V., Wishner, S., Scholes, J.V., and Tilson, M.D. (1993). Demonstration of interstitial collagenase in abdominal aortic aneurysm disease. J. Surg. Res. 54, 571–574.PubMedCrossRefGoogle Scholar
  33. Jackson, C.L. and Reidy, M.A. (1992). The role of plasminogen activation in smooth muscle cell migration after arterial injury. Ann. N. Y. Acad. Sci. 667, 141–150.PubMedCrossRefGoogle Scholar
  34. Kenagy, R.D., Vergel, S., Mattsson, E., Bendeck, M., Reidy, M.A., and Clowes, A.W. (1996). The role of plasminogen, plasminogen activators, and matrix metalloproteinases in primate arterial smooth muscle cell migration. Arterioscler. Thromb. Vasc. Biol. 16, 1373–1382.PubMedCrossRefGoogle Scholar
  35. Kenagy, R.D., Hart, C.E., Stetler-Stevenson, W.G., and Clowes, A.W. (1997). Primate smooth muscle cell migration from aortic explants is mediated by endogenous platelet-derived growth factor and basic fibroblast growth factor acting through matrix metalloproteinases 2 and 9. Circulation 96, 3555–3560.PubMedCrossRefGoogle Scholar
  36. Knoepfler, P.S., Bloor, C.M., and Carroll, S.M. (1995). Urokinase plasminogen activator activity is increased in the myocardium during coronary artery occlusion. J. Mol. Cell. Cardiol. 27, 1317–1324.PubMedCrossRefGoogle Scholar
  37. Libby, P. (1995). Molecular bases of the acute coronary syndromes. Circulation 91, 2844–2850.PubMedCrossRefGoogle Scholar
  38. Lijnen, H.R. (2001). Plasmin and matrix metalloproteinases in vascular remodeling. Thromb. Haemost. 86, 324–333.PubMedGoogle Scholar
  39. Lijnen, H.R. and Collen, D. (1995). Mechanisms of physiological fibrinolysis. Baillière’s Clin. Haematol. 8, 277–290.CrossRefGoogle Scholar
  40. Lijnen, H.R., Silence, J., Van Hoef, B., and Collen, D. (1998a). Stromelysin-1 (MMP-3)-independent gelatinase expression and activation in mice. Blood 91, 2045–2053.PubMedGoogle Scholar
  41. Lijnen, H.R., Ugwu, F., Bini, A., and Collen, D. (1998b). Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37, 4699–4702.PubMedCrossRefGoogle Scholar
  42. Lijnen, H.R., Ugwu, F., Rio, M.C., and Collen, D. (1998c). Plasminogen/plasmin and matrix metalloproteinase system function in mice with targeted inactivation of stromelysin-3 (MMP-11). Fibrinol. Proteol. 12, 155–164.CrossRefGoogle Scholar
  43. Lijnen, H.R., Van Hoef, B., Lupu, F., Moons, L., Carmeliet, P., and Collen, D. (1998d). Function of the plasminogen/plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes. Arterioscler. Thromb. Vasc. Biol. 18, 1035–1045.PubMedCrossRefGoogle Scholar
  44. Lijnen, H.R., Lupu, F., Moons, L., Carmeliet, P., Goulding, D., and Collen, D. (1999a). Temporal and topographic matrix metalloproteinase expression after vascular injury in mice. Thromb. Haemost. 81, 799–807.PubMedGoogle Scholar
  45. Lijnen, H.R., Van Hoef, B., Soloway, P., and Collen, D. (1999b). Tissue inhibitor type 1 of matrix metalloproteinases (TIMP-1) impairs arterial neointima formation after vascular injury in mice. Circ. Res. 85, 1186–1191.PubMedCrossRefGoogle Scholar
  46. Lijnen, H.R., Van Hoef, B., Dewerchin, M., and Collen, D. (2000). α2-Antiplasmin gene deficiency in mice does not affect neointima formation after vascular injury. Arterioscler. Thromb. Vasc. Biol. 20, 1488–1492.PubMedCrossRefGoogle Scholar
  47. Lovdahl, C., Thyberg, J., Cercek, B., Blomgren, K., Dimayuga, P., Kallin, B., and Hultgardh-Nilsson, A. (1999). Antisense oligonucleotides to stromelysin mRNA inhibit injury-induced proliferation of arterial smooth muscle cells. Histol. Histopathol. 14, 1101–1112.PubMedGoogle Scholar
  48. Lund, L.R., Rømer, J., Bugge, T.H., Nielsen, B.S., Frandsen, T.L., Degen, J.L., Stephens, R.W., and Danø, K. (1999). Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J. 18, 4645–4656.PubMedCrossRefGoogle Scholar
  49. Marcotte, P.A., Kozan, I.M., Dorwin, S.A., and Ryan, J.M. (1992). The matrix metalloproteinase pump-1 catalyzes formation of low molecular weight (pro)urokinase in cultures of normal human kidney cells. J. Biol. Chem. 267, 13803–13806.PubMedGoogle Scholar
  50. Moons, L., Shi, V., Ploplis, V., Plow, E., Haber, E., Collen,, D., and Carmeliet, P. (1998). Reduced transplant arteriosclerosis in plasminogen deficient mice. J. Clin. Invest. 102, 1788–1797.PubMedCrossRefGoogle Scholar
  51. Nagano, H., Mitchell, R.N., Taylor, M.K., Hasegawa, S., Tilney, N.L., and Libby, P. (1997). Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J. Clin. Invest. 100, 550–557.PubMedCrossRefGoogle Scholar
  52. Nagase, H. (1997). Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378, 151–160.PubMedGoogle Scholar
  53. Nagase, H. and Woessner, J.F. Jr. (1999). Matrix metalloproteinases. J. Biol. Chem. 274, 21491–21494.PubMedCrossRefGoogle Scholar
  54. Newman, K.M., Jean Claude, J., Li, H., Scholes, J.V., Ogata, Y., Nagase, H., and Tilson, M.D. (1994). Cellular localization of matrix metalloproteinase in the abdominal aortic aneurysm wall. J. Vasc. Surg. 20, 814–820.PubMedCrossRefGoogle Scholar
  55. Ogata, Y., Enghild, J.J., and Nagase, H. (1992). Matrix metalloproteinase 3 (stromelysin) activates the precursor of the human matrix metalloproteinase 9. J. Biol. Chem. 267, 3581–3584.PubMedGoogle Scholar
  56. Okada, Y., Gonoji, Y., Naka, K., Tomita, K., Nakanishi, I., Iwata, K., Yamashita, K., and Hayakawa, T. (1992). Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J. Biol. Chem. 267, 21712–21719.PubMedGoogle Scholar
  57. Patterson, B.C. and Sang, Q.A. (1997). Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J. Biol. Chem. 272, 28823–28825.PubMedCrossRefGoogle Scholar
  58. Peterson, J.T., Rosebury, W.S., Robertson, A.W., Washington, R.A., Li, H., O’Brien, P.M., Sliskovic, D.R., Hallak, H., Uprichard, A.C.G., and Bocan, T.M.A. (1997). Matrix metalloproteinase inhibition blocks progression of heart failure. Circulation 96 (Suppl. I), I-520 (Abstract).Google Scholar
  59. Reidy, M.A., Irvin, C., and Lindner, V. (1996). Migration of arterial wall cells. Expression of plasminogen activators and inhibitors in injured rat arteries. Circ. Res. 78, 405–414.PubMedCrossRefGoogle Scholar
  60. Robert, V., Besse, S., Sabri, A., Silvestre, J.S., Assayag, P., Nguyen, V.T., Swynghedauw, B., and Delcayre, C. (1997). Differential regulation of matrix metalloproteinases associated with aging and hypertension in the rat heart. Lab. Invest. 76, 729–738.PubMedGoogle Scholar
  61. Rohde, L.E., Ducharme, A., Arroyo, L.H., Aikawa, M., Sukhova, G.H., Lopez-Anaya, A., McClure, K.F., Mitchell, P.G., Libby, P., and Lee, R.T. (1999). Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99, 3063–3070.PubMedCrossRefGoogle Scholar
  62. Rømer, J., Lund, L.R., Eriksen, J., Ralfkiær, E., Zeheb, R., Gelehrter, T.D., Danø, K., Kristensen, P. (1991). Differential expression of urokinase-type plasminogen activator and its type-1 inhibitor during healing of mouse skin wounds. J. Invest. Dermatol. 97, 803–811.PubMedCrossRefGoogle Scholar
  63. Rømer, J., Lund, L.R., Eriksen, J., Pyke, C., Kristensen, P., and Danø, K. (1994). The receptor for urokinase-type plasminogen activator is expressed by keratinocytes at the leading edge during re-epithelialization of mouse skin wounds. J. Invest. Dermatol. 102, 519–522.PubMedCrossRefGoogle Scholar
  64. Rømer, J., Bugge, T.H., Pyke, C., Lund, L.R., Flick, M.J., Degen, J.L., and Danø, K. (1996). Impaired wound healing in mice with a disrupted plasminogen gene. Nature Med. 2, 287–292.PubMedCrossRefGoogle Scholar
  65. Russel, M.E., Wallace, A.F., Hancock, W.W., Sayegh, M.H., Adams, D.H., Sibinga, N.E., Wyner, L.R., and Karnovsky, M.J. (1995). Upregulation of cytokines associated with macrophage activation in the Lewis-to-F344 rat transplantation model of chronic cardiac rejection. Transplantation 59, 572–578.Google Scholar
  66. Sakalihasan, N., Delvenne, P., Nusgens, B.V., Limet, R., and Lapiere, C.M. (1996). Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 24, 127–133.PubMedCrossRefGoogle Scholar
  67. Spinale, F.G., Krombach, R.S., Coker, M.L., Mukherjee, R., Houck, W.V., Clair, M.J., Kribbs, S.B., Hebbar, L., and Peterson, J.T. (1997). Matrix metalloproteinase inhibition with congestive heart failure improves left ventricular geometry and pump function. Circulation 96 (Suppl. I), I–520 (Abstract).Google Scholar
  68. Suzuki, K., Enghild, J.J., Morodomi, T., Salvesen, G., and Nagase, H. (1990). Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29, 10261–10270.PubMedCrossRefGoogle Scholar
  69. Thomas, C.V., Coker, M..L, Zellner, J.L., Handy, J.R., Crumbley, A.J. III, and Spinale, F.G. (1998). Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97, 1708–1715.PubMedCrossRefGoogle Scholar
  70. Tyagi, S.C., Kumar, S., Cassatt, S., and Parker, J.L. (1996). Temporal expression of extracellular matrix metalloproteinases and tissue plasminogen activator in the development of collateral vessels in the canine model of coronary occlusion. Can. J. Physiol. Pharmacol. 74, 983–995.PubMedGoogle Scholar
  71. Ugwu, F., Van Hoef, B., Bini, A., Collen, D., and Lijnen, H.R. (1998). Proteolytic cleavage of urokinase-type plasminogen activator by stromelysin-1 (MMP-3). Biochemistry 37, 7231–7236.PubMedCrossRefGoogle Scholar
  72. Ugwu, F., Lemmens, G., Collen, D., and Lijnen, H.R. (1999). Modulation of cell-associated plasminogen activation by stromelysin-1 (MMP-3). Thromb. Haemost. 82, 1127–1131.PubMedGoogle Scholar
  73. Vassalli, J.D., Sappino, A.P., and Belin, D. (1991). The plasminogen activator/plasmin system. J. Clin. Invest. 88, 1067–1072.PubMedCrossRefGoogle Scholar
  74. Webb, K.E., Henney, A.M., Anglin, S., Humphries, S.E., and McEwan, J.R. (1997). Expression of matrix metalloproteinases and their inhibitor TIMP-1 in the rat carotid artery after balloon injury. Arterioscler. Thromb. Vasc. Biol. 17, 1837–1844.PubMedCrossRefGoogle Scholar
  75. Zempo, N., Kenagy, R.D., Au, Y.P.T., Bendeck, M., Clowes, M.M., Reidy, M.A., and Clowes, A.W. (1994). Matrix metalloproteinases of vascular cells are increased in balloon-injured rat carotid artery. J. Vasc. Surg. 20, 209–217.PubMedCrossRefGoogle Scholar
  76. Zempo, N., Koyama, N., Kenagy, R.D., Lea, H.J., and Clowes, AW. (1996). Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arterioscler. Thromb. Vasc. Biol. 16, 28–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • H. Roger Lijnen
    • 1
  • Désiré Collen
    • 1
  1. 1.Center for Molecular and Vascular BiologyUniversity of Leuven, Campus Gasthuisberg, O & NLeuvenBelgium

Personalised recommendations