Skip to main content

Part of the book series: Topics in Geobiology ((TGBI,volume 20))

Abstract

Avoidance of predation is of critical importance to any organism, but reef-building organisms might be considered particularly vulnerable due to their immobile, epifaunal life habit. The need for photosymbiotic metazoans to expose large areas of soft tissue to light further increases the risk of predation, as well as fouling. It has been well established that modern coral reefs grow in particular environments where avoidance of, or adaptation to, competition and disturbance are of prime importance (e.g., Connell, 1978; Jackson, 1983; Glynn, 1988). In particular, the control and incidental damage exerted by herbivores, particularly fishes, in limiting the distribution and abundance of algae is probably crucial to the survival of modern coral reefs (e.g., Hay, 1981; Lewis, 1986). As a result, many coral reef organisms are supposed to show a considerable range of anti-predation traits, but unequivocal confirmation of these as adaptations, as well as details of their evolutionary origin and development, remain poorly known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A. L., and King, J. M., 1977, Distribution, abundance and substrate preference of demersal zooplankton, J. Exper. Mar. Biol. Ecol. 44:133–156.

    Article  Google Scholar 

  • Babcock, R. C., Bull, G., Harrison, P. L., Heywood, A. J., Oliver, J. K., Wallace, C. C., and Willis, B. L., 1986, Synchronous multispecific spawnings of 107 scleractinian coral species on the Great Barrier Reef, Mar. Biol. 90:379–394.

    Article  Google Scholar 

  • Bak, R. P. M., 1983, Neoplasia, regeneration and growth in the reef-building coral Acropora palmata, Mar. Biol. 77:221–227.

    Article  Google Scholar 

  • Bak, R. P. M., and Engel, M. S., 1979, Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parent coral community, Mar. Biol. 54:341–352.

    Article  Google Scholar 

  • Bak, R. P. M, and Steward-Van Es, Y., 1980, Regeneration of superficial damage in the scleractinian corals Agaricia agaricites F. Purpurea and Porites asteroids, Bull. Mar. Sci. 30:883–887.

    Google Scholar 

  • Bak, R. P. M., Brouns, J. J. W. M., and Heys, F. M. L., 1977, Regeneration and aspects of spatial competition in the scleractinian corals, Proc. 3rd Int. Coral Reef Symp., Miami 1:143–148.

    Google Scholar 

  • Bakus, G. J., 1974, Toxicity in holothurians: a geographic pattern, Biotropica 6:229–236.

    Article  Google Scholar 

  • Bakus, G. J., 1981, Chemical defense mechanisms on the Great Barrier Reef, Australia, Science 211:497–499.

    Article  Google Scholar 

  • Bellwood, D. R., 1996, The Eocene fishes of Monte Bolca: the earliest coral reef fish assemblage, Coral Reefs 15:11–19.

    Google Scholar 

  • Bellwood, D. R., 1997, Reef fish biogeography; habitat associations, fossils and phytogenies, Proc. 8th Int. Coral Reef Symp., Panama 2:1295–1300.

    Google Scholar 

  • Bellwood, D. R., and Schultz, O., 1991, A review of the fossil record of the parrotfishes (family Scaridae) with a description of a new Calatomus species from the middle Miocene (Badenian) of Austria, Naturhistor. Mus. Wein 92:55–71.

    Google Scholar 

  • Bergstom, J., 1979, Morphology of fossil arthropods as a guide to phylogenetic relationships, in: Arthropod Phylogeny (A. P. Gupta, ed.), Van Nostrand Reinhold, New York, pp. 3–58.

    Google Scholar 

  • Birkeland, C., 1977, The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits, Proc. 3rd Int. Coral Reef Symp., Miami 1:16–21.

    Google Scholar 

  • Bolser, R. C, and Hay, M. E., 1997, Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds, Ecology 78:2269–2286.

    Google Scholar 

  • Bromley, R. G., 1975, Comparative analysis of fossil and Recent echinoid bioerosion. Palaeontology 18:725–739.

    Google Scholar 

  • Bromley, R. G., 1992, The palaeoecology of bioerosion, in: The Paleobiology of Trace Fossils (S. K. Donovan, ed.), Wiley, Chichester, pp. 134–154.

    Google Scholar 

  • Brown, B. E., 1997, Adaptations of reef corals to physical environmental stress, Adv. Mar. Biol. 31: 221–299.

    Article  Google Scholar 

  • Choat, J. H., 1991, The biology of herbivorous fishes on coral reefs, in: The Ecology of Fishes on Coral Reefs (P. F. Sale, ed.), Academic Press, London, pp. 120–155.

    Google Scholar 

  • Choat, J. H., and Bellwood, D. R., 1991, Reef fishes: their history and evolution, in: The Ecology of Fishes on Coral Reefs (P. F. Sale, ed.), Academic Press, London, pp. 39–66.

    Google Scholar 

  • Conway Morris, S., 1979, Middle Cambrian polychaetes from the Burgess Shale of British Columbia. Phil. Trans. R. Soc. Lond. B285:227–391.

    Google Scholar 

  • Coates, A. G., and Jackson, J. B. C, 1985, Morphological themes in the evolution of clonal and aclonal marine invertebrates, in: Population Biology and Evolution of Clonal Organisms (J. B. C. Jackson, L. W. Buss and R. E. Cook, eds.), Yale University Press, New Haven, pp. 67–106.

    Google Scholar 

  • Connell, J. H., 1973, Population ecology of reef-building coral, in: Biology and Geology of Coral Reefs, 2, Biology, 1 (O. A. Jones and R. Endean, eds.), Academic Press, New York, pp. 205–245.

    Google Scholar 

  • Connell, J. H., 1978, Diversity in tropical rain forests and coral reefs, Science 199:2–10.

    Article  Google Scholar 

  • Connell, J. H., 1980, Diversity and coevolution of competitors, or the ghost of competition past, Oikos 35:131–138.

    Article  Google Scholar 

  • Edhorn, A.-S., 1977, Early Cambrian algae croppers, Can. J. Earth Sci. 14:1014–1020.

    Article  Google Scholar 

  • Gill, G. A., and Coates, A. G., 1977, Mobility, growth patterns and substrate in some fossil and recent corals, Lethaia 10:119–134.

    Article  Google Scholar 

  • Glynn, P. W., 1973, Ecology of a Caribbean coral reef. The Pontes reef-flat biotope. II. Plankton community with evidence for depletion, Mar. Biol. 20:297–318.

    Article  Google Scholar 

  • Glynn, P. W., 1988, Predation on coral reefs: some key processes, concepts and research directions, Proc. 4th Int. Coral Reef Symp. 1:51–62.

    Google Scholar 

  • Glynn, P. W., Stewart, R. H., and McCosker, J. E., 1972, Pacific coral reefs of Panama: structure, distribution and predators, Geol. Rundschau 61:483–519.

    Article  Google Scholar 

  • Gould, S. J., and Vrba E. S., 1982, Exaptation – a missing term in the science of form, Paleobiology 8:4–15.

    Google Scholar 

  • Hall, V. R., and Hughes, T. P., 1996, Reproductive strategies of modular organisms: comparative studies of reef-building corals, Ecology 77:950–963.

    Article  Google Scholar 

  • Harper, E. M., and Skelton, P. W., 1993, The Mesozoic Marine Revolution and epifaunal bivalves, Scripta Geol, Special Issue 2:127–153.

    Google Scholar 

  • Harvey, P. H., and Greenwood, P. J., 1978, Anti-predator defense strategies: Some evolutionary problems, in: Behavioural Ecology: An Evolutionary Approach (J. R. Krebs and N. B. Davies, eds.), Blackwell, Oxford, UK, pp. 129–151.

    Google Scholar 

  • Hay, M. E., 1981, Herbivory, algal distribution and the maintenance of between-habitat diversity on a tropical fringing reef, Am. Natur. 118:520–540.

    Article  Google Scholar 

  • Hay, M. E., 1984, Patterns offish and urchin grazing on Caribbean coral reefs: are previous results typical?, Ecology 65:446–454.

    Article  Google Scholar 

  • Hay, M. E., 1991, Fish-seaweed interactions on coral reefs: effects of herbivorous fishes and adaptations of the prey, in: The Ecology of Coral Reef Fishes (P. F. Sale, ed.), Academic Press, San Diego, pp. 96–119.

    Google Scholar 

  • Hobson, E. S., 1968, Predatory behavior of some shore fishes in the Gulf of California, Res. Report U.S. Fish midlife Service 83:1–92.

    Google Scholar 

  • Hughes, T. P., 1994, Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef, Science 265:1547–1551.

    Article  Google Scholar 

  • Insalaco, E., 1996, Upper Jurassic microsolenid biostromes of north and central Europe: fabrics and depositional environment, Palaeogeogr. Palaeoclim. Palaeoecol. 121:169–194.

    Article  Google Scholar 

  • Jackson, J. B. C., 1983, Biological determinants of present and past sessile animal distributions, in: Biotic Interactions in Recent and Fossil Benthic Communities (M. J. S. Tevesz and P. W. McCall, eds.), Plenum Press, New York, pp. 39–120.

    Google Scholar 

  • Jackson, J. B. C., 1985, Distribution and ecology of clonal and aclonal benthic invertebrates, in: Population Biology and Evolution of Clonal Organisms (J. B. C. Jackson, L. W. Buss, and R. E. Cook, eds.), Yale University Press, New Haven, pp. 297–355.

    Google Scholar 

  • Jackson, J. B. C, and Coates, A. G., 1986, Life cycles and evolution of clonal (modular) animals, Phil Trans. R. Soc. Lond. B313:7–22.

    Google Scholar 

  • Jackson, J. B. C, and Hughes, T.P., 1985, Adaptive strategies of coral-reef Invertebrates, Am. Sci. 75:265–274.

    Google Scholar 

  • Johnson, K. G., Budd, A. F., and Stemann, T. A., 1995, Extinction selectivity and ecology of Neogene Caribbean reef corals, Paleobiology 21:52–73.

    Google Scholar 

  • Jones, G. P., Ferrell, D. J., and Sale, P. W., 1991, Fish predation and its impact on the invertebrates of coral reefs and adjacent sediments, in: The Ecology of Fishes on Coral Reefs (P. F. Sale, ed.), Academic Press, London, pp. 156–179.

    Google Scholar 

  • Kaufman, L., 1981, There was biological disturbance on Pleistocene reefs, Paleobiology 7:527–532.

    Google Scholar 

  • Kobluk, D. R., 1985, Biota reserved within cavities in Cambrian Epiphyton mounds, Upper Shady Dolomite, South-western Virginia, J. Paleontol 59:1158–1172.

    Google Scholar 

  • Kojis, B. L., and Quinn, N. J., 1985, Puberty in Goniastrea favulus age or size related?, Proc. 5th Int. Coral Reef Symp. 4:289–293.

    Google Scholar 

  • Krumm, D. K.„ and Jones, D. S., 1993, A new coral-bivalve association (Actinastrea-Lithophaga) from the Eocene of Florida, J. Paleontol 67: 945–951.

    Google Scholar 

  • Lewis, S. M., 1986, The role of herbivorous fishes in the organization of a Caribbean reef community, Ecol. Monogr. 56:183–200.

    Article  Google Scholar 

  • Lindberg, D. R., and Dwyer, K. R., 1983, The topography, formation and mode of home depression on Collisella scabra (Gould) (Gastropod: Acmaeidea), Veliger 25:229–271.

    Google Scholar 

  • Loya, Y., 1976, Skeletal regenation in a Red Sea coral population, Nature 261:490–491.

    Article  Google Scholar 

  • McCall, J., Rosen, B. R., and Darrell, J., 1994, Carbonate deposition in accretionary prism settings: early Miocene coral limestones and corals of the Makhran Mountain Range in southern Iran, Fades 31:141–178.

    Google Scholar 

  • McKinney, F. K., and Jackson, J. B. C., 1989, Bryozoan Evolution, Unwin Hyman, Boston.

    Google Scholar 

  • Meesters, E. H., Wesseling, I., and Bak, R. P. M., 1996, Partial mortality in three species of reef-building corals and the relation with colony morphology, Bull. Mar. Sci. 58: 838–852.

    Google Scholar 

  • Meesters, E. H., Wesseling, I., and Bak, R. P. M., 1997, Coral colony tissue damage in six species of reef- building corals: partial mortality in relation to depth and surface area, J. Sea Res. 37:131–144.

    Article  Google Scholar 

  • Pleydell, S. M., and Jones, B., 1988, Boring of various faunal elements in the Oligocene-Miocene Bluff Formation of Grand Cayman, British West Indies, Palaeontology 62:348–367.

    Google Scholar 

  • Roniewicz, E., and Morycowa, E., 1993, Evolution of the Scleractinina in the light of microstructural data, in: Proc. 6th Int. Symp. Fossil Cnidaria and Porifera (P. Oekentorp-Küster, ed.), Courier Forshungsinstitut Senckenberg 164:233–240.

    Google Scholar 

  • Rosen, B. R., 1986, Modular growth and form of corals: a matter of metamers?, Phil. Trans. R. Soc. Lond. B313:115–142.

    Google Scholar 

  • Rosen, B. R., 1998, Corals, reefs, algal symbiosis and global change: the Lazarus factor, in: Biotic Response to Global Change: The Last 145 Million Years (S. J. Culver and P. F. Rawson, eds.) Chapman and Hall, London.

    Google Scholar 

  • Rylaarsdam, K. W., 1983, Life histories and abundance patterns of colonial corals on Jamaican reefs, Mar. Ecol. Prog. Ser. 13:249–260.

    Article  Google Scholar 

  • Savazzi, E., 1982, Commensalism between boring mytilid bivalves and a soft bottom coral in the Upper Eocene of Northern Italy, Paläont. Zeit. 56:165–175.

    Google Scholar 

  • Schlichter, D., 1991, A perforated gastrovasular cavity in Leptoseris fragilis. A new improved strategy to improve heterotrophic nutrition in corals, Naturwiss. 78:467–469.

    Article  Google Scholar 

  • Signor, P. W. III, and Brett, C. E., 1984, The mid-Paleozoic precursor to the Mesozoic Marine Revolution. Paleobiology 10:229–245.

    Google Scholar 

  • Skelton, P. W., 1991, Morphogenetic versus environmental cues for adaptive radiations, in: Constructional Morphology and Evolution (N. Schmidt-Kittler and K. Voegel, eds.), Springer-Verlag, Berlin, pp. 375–388.

    Chapter  Google Scholar 

  • Smith, A. B., 1984, Echinoid Paleobiology. Allen and Unwin, London.

    Google Scholar 

  • Steneck, R. S., 1982, Adaptive trends in the ecology and evolution of crustose coralline algae (Rhodophyta, Corallinaceae). Unpublished Ph.D. Dissertation, The John Hopkins University.

    Google Scholar 

  • Steneck, R. S., 1983, Escalating herbivory and resulting adaptive trends in calcareous algal crusts, Paleobiology 9:44–61.

    Google Scholar 

  • Steneck, R. S., 1985, Adaptations of crustose coralline algae to herbivory: Patterns in space and time, in: Paleobiology: Contempory Research and Applications (D. F. Toomey and M. H. Nitecki, eds.), Springer-Verlag, Berlin, pp. 352–366.

    Google Scholar 

  • Steneck, R. S., 1988, Herbivory on coral reefs: a synthesis, Proc. 6th Int. Coral Reef Symp. 1:37–49.

    Google Scholar 

  • Steneck, R. S., and Watling, L., 1982, Feeding capabilities and limitations of herbivorous molluscs: a functional group approach, Mar. Biol. 68: 299–319.

    Article  Google Scholar 

  • Talbot, F. H., and Goldman, G., 1972, A preliminary report on the diversity and feeding relationships of the reef fishes on One Tree Island, Great Barrier Reef system, Proc. Symp. Corals and Coral Reefs 1: 425–442.

    Google Scholar 

  • Thayer, C. W., 1983, Sediment-mediated biological disturbance and the evolution of marine benthos, in: Biotic Interactions in Recent and Fossil Benthic Communities (M. J. S. Tevesz and P. W. McCall, eds.), Plenum Press, New York, pp. 480–625.

    Google Scholar 

  • Tunnicliffe, V., 1981, Breakage and propagation of the stony coral Acropora cervicornis, Proc. Nat. Acad. Sci, USA 78:2427–2431.

    Article  Google Scholar 

  • Tyler, J. C., 1980, Osteology, phylogeny, and higher classification of the fishes of the order Plectognathi (Tetradontiformes), NOAA Technical Report NMF Circular 434:1–422.

    Google Scholar 

  • Van Belle, R. A., 1977, Sur la classification des Polyplacophora: III. Classification systematique des Subterenochitonidae (Neoloricata: Chitonina), Inf. Societe Belgique Malacologique 5:15–40.

    Google Scholar 

  • Vermeij, G. J., 1987, Evolution and Escalation: An Ecological History of Life, Princeton University Press, Princeton.

    Google Scholar 

  • Wellington, G. M., 1982, Depth zonation of corals in the Gulf of Panama: control and facilitation by resident reef fish, Ecol. Monogr. 52:223–241.

    Article  Google Scholar 

  • Wells, J, W., 1956, Scleractinia, in: Treatise on Invertebrate Paleontology. Coelenterata (R. C. Moore, ed.), Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas, USA, pp. 328–400.

    Google Scholar 

  • Wood, R., 1999, Reef Evolution, Oxford University Press, Oxford.

    Google Scholar 

  • Wood, R., Zhuravlev, A. Yu., and Debrenne, F., 1992, Functional biology and ecology of Archaeocyatha, Palaios 7:131–156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wood, R. (2003). Predation in Ancient Reef-Builders. In: Kelley, P.H., Kowalewski, M., Hansen, T.A. (eds) Predator—Prey Interactions in the Fossil Record. Topics in Geobiology, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0161-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0161-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4947-1

  • Online ISBN: 978-1-4615-0161-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics