Skip to main content

Part of the book series: Topics in Geobiology ((TGBI,volume 20))

Abstract

The modern oceans teem with animals which kill others to live, from killer whales that form pods of several individuals in co-ordinated attacks on their quarry (Pitman et al., 2001) to the drilling activities of tiny predatory foraminifers (Hallock et al., 1998). Most authors believe that predator-prey interactions, in tandem with competition, are key factorsS in controlling structure in modern communities. Classic work by Connell (1970) and Paine (1974) showed how predation in rocky shore communities prevented domination by major space occupiers and thus promoted overall diversity. In such situations taxa with antipredatory adaptations will be at an advantage and, if predation has been similarly important over geological time, we should anticipate that it has been an important agent of natural selection. Indeed, it is often suggested that the first appearance of shelled organisms in the “Cambrian explosion” might be due, in part, to the rise of predators (Conway Morris, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. R., 1981, Predation scars preserved in Chesterian brachiopods: probable culprits and evolutionary consequences for the articulates, J. Paleontol. 55:192–203.

    Google Scholar 

  • Alexander, R. R., 1986, Resistance to and repair of shell breakage induced by durophages in Late Ordovician brachiopods, J. Paleontol. 60:273–285.

    Google Scholar 

  • Alexander, R. R., and Dietl, G. P., 2001, Shell repair frequencies in New Jersey bivalves: a recent baseline for tests of escalation with Tertiary, Mid-Atlantic congeners, Palaios 16:354–371.

    Google Scholar 

  • Allmon, W. D., Nieh, J. C., and Norris, R. D., 1990, Drilling and peeling of turritelline gastropods since the Late Cretaceous, Palaeontology 33:595–611.

    Google Scholar 

  • Ambrose, R. F., 1986, Effects of octopus predation on motile invertebrates in a rocky subtidal community, Mar. Ecol. Prog. Ser. 30:261–273.

    Article  Google Scholar 

  • Appleton, R. D., and Palmer, A. R., 1988, Water-borne stimuli released by predatory crabs and damaged prey produce more predation-resistant shells in a marine gastropod, Proc. Natl. Acad. Sci., USA 85:4387–4391.

    Article  Google Scholar 

  • Aronson, R. B., 1987, Predation on fossil and Recent ophiuroids, Paleobiology 13:187–192.

    Google Scholar 

  • Aronson, R. B., 1991, Escalating predation on crinoids in the Devonian: negative community-level evidence, Lethaia 24:123–128.

    Article  Google Scholar 

  • Aronson, R. B., 1994, Scale-independent biological interactions in the marine environment, Oceanogr. Mar. Biol. Ann. Rev. 32:435–460.

    Google Scholar 

  • Aronson, R. B., Blake, D. B. and Oji, T., 1997, Retrograde community structure in the late Eocene of Antarctica, Geology 25:903–906.

    Article  Google Scholar 

  • Aronson, R. B., and Sues, H.-D., 1987, The paleoecological significance of an anachronistic ophiuroid community, in: Predation: Direct and Indirect Impacts on Aquatic Communities (W. C. Kerfoot and A. Sih, eds.), University Press of New England, Hanover, NH, pp. 355–366.

    Google Scholar 

  • Bengtson, S., and Zhao, Y., 1992, Predatorial borings in Late Precambrian mineralized exoskeletons, Science 257:367–360.

    Article  Google Scholar 

  • Benton, M. J. (ed.), 1993, The Fossil Record 2, Chapman and Hall, London, 845 pp.

    Google Scholar 

  • Bertness, MD., 1981, Crab shell-crushing predation and gastropod architectural defense, J. Exper. Mar. Biol. Ecol. 50:213–230.

    Article  Google Scholar 

  • Blake, D. B., 1987, A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata), J. Nat. Hist. 21:481–528.

    Article  Google Scholar 

  • Blake, D. B. and Guensburg, T. E., 1992, Predatory asteroids and the fate of brachiopods — a comment, Lethaia 23:429–430.

    Article  Google Scholar 

  • Blake, D. B., and Guensburg, T. E., 1994, Predation by the Ordovician asteroid Promopalaeaster on a pelecypod, Lethaia 27:235–239.

    Article  Google Scholar 

  • Bottjer, D. J., and Jablonski, D., 1988, Paleoenvironmental patterns in the evolution of post-Paleozoic marine invertebrates, Palaios 3:540–560.

    Article  Google Scholar 

  • Branch, G. M., 1979, Aggression by limpets against invertebrate predators, Anim. Behav. 27:408–410.

    Article  Google Scholar 

  • Bromley, R. G., 1981, Concepts in ichnotaxonomy illustrated by small round holes in shells, Acta Geol. Hisp. 16:55–64.

    Google Scholar 

  • Bromley, R. G., 1993, Predation habits of octopus past and present and a new ichnospecies, Oichnus ovalis, Bull. Geol. Soc., Denmark 40:167–173.

    Google Scholar 

  • Brunton, H., 1966, Predation and shell damage in a Visean brachiopod fauna, Palaeontology 9: 355–359.

    Google Scholar 

  • Carriker, M. R., 1981, Shell penetration and feeding by naticacean and muricacean predatory gastropods: a synthesis, Malacologia 20:403–422.

    Google Scholar 

  • Connell, J. H., 1970, A predator-prey system in the marine intertidal region. 1. Balanus glandula and several predatory species of Thais, Ecol. Monographs 40:49–78.

    Article  Google Scholar 

  • Conway Morris, S., 1977, Fossil priapulid worms, Spec. Papers Palaeont. 20:1–95.

    Google Scholar 

  • Conway Morris, S., 2001, Significance of early shells, in: Paleobiology II (D.E.G. Briggs and P.R. Crowther, eds.), Blackwell Science, Oxford, pp. 31–40.

    Chapter  Google Scholar 

  • Conway Morris, S., and Bengtson, S., 1994, Cambrian predators: possible evidence from boreholes, J. Paleontol. 68:1–23.

    Google Scholar 

  • Day, R. W., Barkai, A., and Wickens, P.A., 1991, Trapping of three drilling whelks by two species of mussel, J. Exper. Mar. Biol. Ecol. 149:109–122.

    Article  Google Scholar 

  • Dietl, G. P. and Alexander, R. R., 1998, Shell repair frequencies in whelks and moon snails from Delaware and southern New Jersey, Malacologia 39:151–165.

    Google Scholar 

  • Donovan, S. K. and Gale, A. S., 1990, Predatory asteroids and the decline of the articulate brachiopods, Lethaia 23:77–86.

    Article  Google Scholar 

  • Ebbestad, J. O. R., and Peel, J. S., 1997, Attempted predation and shell repair in Middle and Upper Ordovician gastropods from Sweden, J. Paleontol. 71:1007–1019.

    Google Scholar 

  • Fürsich, F. T., and Jablonski, D., 1984, Late Triassic naticid drillholes: carnivorous gastropods gain a major adaptation but fail to radiate, Science 224:78–80.

    Article  Google Scholar 

  • Gale, A. S., 1987, Phylogeny and classification of the Asteroidea (Echinodermata), Zool. J. Linn. Soc. 89:107-132.

    Article  Google Scholar 

  • Geary, D. W., Allmon, W. D., and Reaka-Kudla, M. L., 1991, Stomatopod predation on fossil gastropods from the Plio-Pleistocene of Florida, J. Paleontol 65:355–360.

    Google Scholar 

  • Gould, S. J., and Vrba, E. S., 1982, Exaptation — a missing term in the science of form, Paleobiology 8:4–15.

    Google Scholar 

  • Hallock, P., Talge, H. K., Williams, D. E., and Harney, J. N., 1998, Borings in Amphistegina (Foraminiferida): evidence of predation by Floresina amphiphaga (Foraminiferida), Hist. Biol. 13:73–76.

    Article  Google Scholar 

  • Harper, E. M., 1991, The role of predation in the evolution of the cemented habit in bivalves, Palaeontology 34:455–460.

    Google Scholar 

  • Harper, E., 1994a, Molluscivory by the asteroid Coscinasterias acutispina (Stimpson), in: The Malacofauna of Hong Kong and southern China III (B. Morton, ed.), Hong Kong, Hong Kong University Press, pp. 339–355.

    Google Scholar 

  • Harper, E. M., 1994b, Are conchiolin sheets in corbulid bivalves primarily defensive?, Palaeontology 37:551–578.

    Google Scholar 

  • Harper, E. M., 1997, The molluscan periostracum: an important constraint in bivalve evolution, Palaeontology 40:71–97.

    Google Scholar 

  • Harper, E. M., 2002, Plio-Pleistocene octopod drilling behavior in scallops from Florida, Palaios 17:292–296.

    Article  Google Scholar 

  • Harper, E. M., Forsythe, G. T. W., and Palmer, T., 1998, Taphonomy and the Mesozoic Marine Revolution: preservation state masks the importance of boring predators, Palaios 13:352–360.

    Article  Google Scholar 

  • Harper, E. M., and Skelton, P. W., 1993, The Mesozoic Marine Revolution and epifaunal bivalves, Scripta Geol., Spec. Issue 2:127–153.

    Google Scholar 

  • Harper, E. M., and Wharton, D. S., 2000, Boring predation and Mesozoic articulate brachiopods, Palaeogeogr. Palaeoclimatol., Palaeoecol. 158:15–24.

    Article  Google Scholar 

  • Hughes, R. N., and Elner, R.W., 1979, Tactics of a predator, Carcinus maenus and morphological responses of the prey, Nucella lapillus, J. Anim. Ecol. 48:65–78.

    Article  Google Scholar 

  • Jablonski, D. and Bottjer, D.J., 1990, On shore-offshore trends in marine invertebrate evolution, in: Causes of Evolution: A Paleontological Perspective (R. M. Ross and W. D. Allmon, eds.), University of Chicago Press, Chicago, pp. 21–75.

    Google Scholar 

  • Jeffries, M. J., and Lawton, J. H., 1985, Predator-prey ratios in communities of freshwater invertebrates: the role of enemy free space, Freshw. Biol. 15:105–112.

    Article  Google Scholar 

  • Kabat, A. R., 1990, Predatory ecology of naticid gastropods with a review of shell boring, Malacologia 32:155–193.

    Google Scholar 

  • Kardon, G., 1998, Evidence from the fossil record of an antipredatory exaptation: conchiolin layers in corbulid bivalves, Evolution 52: 68–79.

    Article  Google Scholar 

  • Kase, T., Shigeta, Y. and Futakami, M., 1994, Limpet home depressions in Cretaceous ammonites, Lethaia 27:49–58.

    Article  Google Scholar 

  • Kauffman, E. G., and Kesling, R., 1960, An Upper Cretaceous ammonite bitten by a mosasaur, Contr. Mus. Paleontol. Univ. Mich. 15:193–248.

    Google Scholar 

  • Kelley, P. H., 1991, The effect of predation intensity on rate of evolution of five Miocene bivalves, Hist. Biol. 5:65–78.

    Article  Google Scholar 

  • Kelley, P. H., and Hansen, T. A., 1993, Evolution of the naticid gastropod predator-prey system: an evaluation of the hypothesis of escalation, Palaios 8:358–375.

    Article  Google Scholar 

  • Kier, P. M., 1974, Evolutionary trends and their significance in post-Paleozoic echinoids, J. Paleontol, Paleontol. Soc. Mem. 5:1–95.

    Google Scholar 

  • Kier, P. M., 1982, Rapid evolution in echinoids, Palaeontology 25:1–9.

    Google Scholar 

  • Kitchell, J. A., Boggs, C. H., Rice, J. A., Kitchell, J. F., Hoffman, A., and Martinell, A., 1986, Anomalies in naticid predatory behavior: a critique and experimental observations, Malacologia 27:291–298.

    Google Scholar 

  • Kitching, J. A., Sloan, N., and Ebling, F.J., 1959, The ecology of Lough Ine VIII. Mussels and their predators, J. Anim. Ecol. 28:331–341.

    Article  Google Scholar 

  • Kluessendorf, J., and Doyle, P., 2000, Pohlsepia mazonensis, an early ‘octopus’ from the Carboniferous of Illinois, USA, Palaeontology 43:919–926.

    Article  Google Scholar 

  • Kowalewski, M., Dulai, A., and Fürsich, F. T., 1998, A fossil record full of holes: The Phanerozoic history of drilling predation, Geology 26:1091–1094.

    Article  Google Scholar 

  • Lau, C. J.,1987, Feeding behaviour of the Hawaiian slipper lobster (Scyllarides squammosus) with a review of decapod crustacean feeding tactics on molluscan prey, Bull. Mar. Sci. 41:378–391.

    Google Scholar 

  • Laxton, J. H., 1971, Feeding in some Australasian Cymatiidae (Gastropoda: Prosobranchia). Zool. Jour. Linn. Soc. 50:1–9.

    Article  Google Scholar 

  • Lewy, Z., and Samtleben, C., 1979, Functional morphology and palaeontological significance of the conchiolin layers in corbulid bivalves, Lethaia 12:341–351.

    Article  Google Scholar 

  • Martill, D. M., 1986, The diet of Metriorhynchus, a Mesozoic marine crocodile, Neues Jahrb. Geol. Paläont. Mh. 1986:621–625.

    Google Scholar 

  • Martill, D. M., 1990, Predation on Kosmoceras by semionotid fish in the Middle Jurassic Lower Oxford Clay of England, Palaeontology 33:739–742.

    Google Scholar 

  • McNamara, K. J., 1994 The significance of gastropod predation to patterns of evolution and extinction in Australian Tertiary echinoids, in: Echinoderms through Time (B. David, A. Guile, J.-P. Féral, and M. Roux, eds.), A. A. Balkema, Rotterdam, pp. 785–793.

    Google Scholar 

  • McQuaid, C., 1994, Feeding behaviour and selection of bivalve prey by Octopus vulgaris Cuvier, J. Exper. Mar. Biol. Ecol. 177:187–202.

    Article  Google Scholar 

  • McRoberts, C. A., 2001, Triassic bivalves and the initial marine Mesozoic revolution: a role for predators?, Geology 29:359–362.

    Article  Google Scholar 

  • Meyer, C. A., and Macurda, D. B., 1977, Adaptive radiation of the comatulid crinoids, Paleobiology 3: 74–82.

    Google Scholar 

  • Monks, N., 2000, Mid-Cretaceous heteromorph ammonite shell damage, J. Moll. Stud. 66:283–285.

    Article  Google Scholar 

  • Morton, B., 1991, Aspects of predation by Tonna zonatum ((Prosobranchia: Tonnoidea) feeding on holothurians in Hong Kong, J. Moll. Stud. 57:11–19.

    Article  Google Scholar 

  • Morton, B., 1996, The evolutionary history of the Bivalvia, in: Origin and Evolutionary Radiation of the Mollusca, (J.D. Taylor, ed.), Oxford University Press, Oxford, pp. 337–356.

    Google Scholar 

  • Morton, B., and Chan, K., 1997, The first report of shell boring predation by a member of the Nassariidae (Gastropoda), J. Moll. Stud. 63:476–478.

    Article  Google Scholar 

  • Newell, N. D., and Boyd, D. W., 1970, Oyster-like Permian Bivalvia, Bull. Amer. Mus. Nat. Hist. 143:219–282.

    Google Scholar 

  • Newton, C. R., 1983, Triassic origin of shell-boring gastropods, Geol. Soc. Am. Abstr. Progr. 15:652–653.

    Google Scholar 

  • Nielsen, C., 1975, Observations on Buccinum undatum L. attacking bivalves and on prey responses with a short review of attack methods of other prosobranchs, Ophelia 13:87–108.

    Article  Google Scholar 

  • Paine, R. T., 1974, Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator, Oecologia 15:93–120.

    Article  Google Scholar 

  • Palmer, A. R., 1979, Fish predation and the evolution of gastropod shell sculpture: experimental and geographical evidence, Evolution 33:697–713.

    Article  Google Scholar 

  • Palmer, A. R., 1983, Relative cost of producing skeletal organic matrix versus calcification: evidence from marine gastropods, Mar. Biol. 57:287–292.

    Article  Google Scholar 

  • Palmer, T. J., 1982, Cambrian to Cretaceous changes in hardground communities, Lethaia 15:309–323.

    Article  Google Scholar 

  • Papp, A., Zapfe, H., Bachmayer, F., and Tauber, A.F., 1947, Lebenspuren maner Krebse, Königl. Akad. Wissensch. Wien, Mathem. Naturwiss. Klass. Sitzber. 155:281–317.

    Google Scholar 

  • Pitman, R. L., Balance, L. T., Mesnick, S. I,. and Chivers, S. J., 2001, Killer whale predation on sperm whales; observations and implications, Mar. Mamm. Sci. 17:494–507.

    Article  Google Scholar 

  • Pojeta, J., and Palmer, T. J., 1976, The origin of rock boring mytilacean pelecypods, Alcheringa 1:167–179.

    Article  Google Scholar 

  • Pollard, J. E., 1990, Evidence for diet, in: Paleobiology: A Synthesis (D. E. G. Briggs and P. R. Crowther, eds.), Blackwell, Oxford, pp. 362–367.

    Google Scholar 

  • Ponder, W. F. and Taylor, J. D., 1992, Predatory shell drilling by two species of Austroginella (Gastropoda: Marginellidae), Jour. Zool., London 228:317–328.

    Article  Google Scholar 

  • Rose, E. P. F., 1978, Some observations on the Recent holectypoid echinoid Echinoneus cyclostomus and their palaeoecological significance, Thalass. Jugoslav. 12:299–306.

    Google Scholar 

  • Roy, K., 1994, Effects of the Mesozoic Marine Revolution on the taxonomic, morphologic, and biogeographicevolution of a group: aporrhaid gastropods during the Mesozoic, Paleobiology 20:274–296.

    Google Scholar 

  • Roy, K., 1996, The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods, Paleobiology 22:436–452.

    Google Scholar 

  • Runnegar, B., 1974, Evolutionary history of the bivalve subclass Anomalodesmata, J. Paleontol. 48:904–939.

    Google Scholar 

  • Saunders, W. B., Knight, R. L., and Bond, P. N., 1991, Octopus predation on Nautilus: evidence from Papua New Guinea, Bull. Mar. Sci. 49:280–287.

    Google Scholar 

  • Signor, P. W., and Brett, C. E., 1984, The mid-Paleozoic precursor to the Mesozoic marine revolution, Paleobiology 10:229–245.

    Google Scholar 

  • Skelton, P. W., Crame, J. A., Morris, N. J., and Harper, E. M., 1990, Adaptive divergence and taxonomic radiation in post-Palaeozoic bivalves, in: Major Evolutionary Radiations. The Systematics Association Special Volume 42 (P. D. Taylor and G. P. Larwood, eds.), Clarendon Press, Oxford, pp. 91–117.

    Google Scholar 

  • Smith, A. B., 1984, Echinoid Palaeobiology, George Allen and Unwin, London, 190 pp.

    Google Scholar 

  • Sohl, N. F., 1969, The fossil record of shell boring by snails, Am. Zool. 9:725–734.

    Google Scholar 

  • Speden, I.G., 1969, Notes on New Zealand fossil Molluscs — 2 Predation on the New Zealand Cretaceous species of Inoceramus (Bivalvia), N. Z. J. Geol. Geophys. 14:56–70.

    Article  Google Scholar 

  • Stanley, S. M., 1968, Post-Paleozoic adaptive radiation of infaunal bivalve molluscs — a consequence of mantle fusion and siphon formation, J. Paleontol. 42:214–229.

    Google Scholar 

  • Stanley, S. M., 1977, Trends, rates, and patterns of evolution in the Bivalvia, in: Patterns of Evolution, As Illustrated by the Fossil Record (A. Hallam, ed.), Elsevier, Amsterdam, pp. 209–250.

    Chapter  Google Scholar 

  • Stehli, F. G., 1968, Taxonomic diversity gradients in pole location: the Recent model, in: Evolution and Environment (E.T. Drake, ed.), Yale University Press, New Haven, pp. 163–227.

    Google Scholar 

  • Steneck, R. S., 1983, Escalating herbivory and resulting adaptive trends in calcareous algal crusts, Paleobiology 9:44–61.

    Google Scholar 

  • Stone, H. M. I., 1998, On predator deterrence by pronounced shell ornament in epifaunal bivalves, Palaeontology 41:1051–1068.

    Google Scholar 

  • Surlyk, F., and Christensen, W. K., 1974, Epifaunal zonation on an Upper Cretaceous rocky coast, Geology 2:529–534.

    Article  Google Scholar 

  • Taylor, J. D., 1970, Feeding habits of predatory gastropods in a Tertiary (Eocene) molluscan assemblage from the Paris Basin, Palaeontology 13:254–60.

    Google Scholar 

  • Taylor, J. D., 1973, The structural evolution of the bivalve shell, Palaeontology 16:519–534.

    Google Scholar 

  • Taylor, J. D., 1980, Diets and habitats of shallow water predatory gastropods around Tolo Channel, Hong Kong, in: The Malacofauna of Hong Kong. The Proceedings of the First International Workshop on the Malacofauna of Hong Kong and Southern China, 1977 (B. Morton, ed.), Hong Kong University Press, Hong Kong, pp. 163–180.

    Google Scholar 

  • Taylor, J. D., 1981, The evolution of predators in the Late Cretaceous and their ecological significance, in: The Evolving Biosphere (P.L. Forey, ed.), British Museum (Natural History) and Cambridge University Press, pp. 229–240.

    Google Scholar 

  • Taylor, J. D., 1998, Understanding biodiversity: adaptive radiations of predatory marine gastropods, in: The Marine Biology of the South China Sea (B. Morton, ed.), Hong Kong University Press, Hong Kong, pp. 187–206.

    Google Scholar 

  • Taylor, J. D., Cleevely, R. J., and Morris, N. J., 1983, Predatory gastropods and their activities in the Blackdown Greensand (Albian) of England, Palaeontology 26:521–533.

    Google Scholar 

  • Taylor, J. D., Cleevely, R. J., and Taylor, C. N., 1980, Food specialization and the evolution of predatory prosobranch gastropods, Palaeontology 23:375–409.

    Google Scholar 

  • Terlau, H., Shoon, K., Grilley, M., Stocker, M., Stuhmer, W., and Olivera, B., 1996, Strategy for rapid immobilization of prey by a fish-hunting marine snail, Nature 381:148–151.

    Article  Google Scholar 

  • Thayer, C. W., 1983, Sediment-mediated biological disturbance and the evolution of the marine benthos, in: Biotic Interactions in Recent and Fossil Benthic Communities (M. J. S. Tevesz and P. L. McCall, eds.), Plenum, New York, pp. 479–595.

    Google Scholar 

  • Thayer, C. W., 1985, Brachiopods versus mussels: competition, predation and palatability, Science 228:1527–1528.

    Article  Google Scholar 

  • Thayer, C. W., and Allmon, R., 1990, Unpalatable thecideid brachiopods from Palau: ecological and evolutionary implications, in: Brachiopods through Time (L. MacKinnon and D. Campbell, eds.), Balkema, Rotterdam, pp. 253–260.

    Google Scholar 

  • Valentine, J. W., Roy, K., and Jablonski, D., 2002, Carnivore/non-carnivore ratios in northeastern Pacific marine gastropods, Mar. Ecol. Prog. Ser. 228:153–163.

    Article  Google Scholar 

  • Vance, R. R., 1978, A mutualistic interaction between a sessile marine clam and its epibionts, Ecology 59:679–685.

    Article  Google Scholar 

  • Vermeij, G. J., 1977, The Mesozoic marine revolution: evidence from snails, predators and grazers, Paleobiology 3:245–258.

    Google Scholar 

  • Vermeij, G. J., 1978, Biogeography and Adaptation: Patterns of Marine Life, Harvard University Press, Cambridge, MA, 332 pp.

    Google Scholar 

  • Vermeij, G. J., 1982, Unsuccessful predation and evolution, Am. Nat. 120:701–720.

    Article  Google Scholar 

  • Vermeij, G. J., 1983, Traces and trends in predation, with special reference to bivalved animals, Palaeontology 26:455–465.

    Google Scholar 

  • Vermeij, G. J., 1987, Evolution and Escalation: An Ecological History of Life, Princeton University Press, Princeton, NJ, 527 pp.

    Google Scholar 

  • Vermeij, G. J., 1990, Asteroids and articulates: is there a causal link?, Lethaia 23:431–432.

    Article  Google Scholar 

  • Vermeij, G. J., 1995, Economics, volcanoes, and Phanerozoic revolutions, Paleobiology 21:125–152.

    Google Scholar 

  • Vermeij, G. J., and Kool, S.P., 1994, Evolution of labral spines in Acanthais, new genus, and other rapanine muricid gastropods, Veliger 37:414–424.

    Google Scholar 

  • Vermeij, G. J., and Veil, J. A., 1978, A latitudinal pattern in bivalve shell gaping, Malacologia 17:57–61.

    Google Scholar 

  • Vermeij, G. J., Zipser, E., and Dudley, E. C., 1980, Predation in time and space: peeling and drilling in terebrid gastropods, Paleobiology 6:352–364.

    Google Scholar 

  • Ward, P., 1981, Shell sculpture as a defensive adaptation in ammonoids, Paleobiology 7: 96–100.

    Google Scholar 

  • Warren, P.H., and Gaston, K.J., 1992, Predator-prey ratios: a special case of a general pattern?, Phil. Trans. R. Soc. Lond., Ser B, 338:113–130.

    Article  Google Scholar 

  • White, M. E., and Wilson, E. A., 1996, Predators, pests, and competitors, in: The Eastern Oyster Crassostrea virginica (V. S. Kennedy, R. I. E. Newell, and A. F. Eble, eds.), Maryland Sea Grant College, Maryland, pp. 559–579.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harper, E.M. (2003). The Mesozoic Marine Revolution. In: Kelley, P.H., Kowalewski, M., Hansen, T.A. (eds) Predator—Prey Interactions in the Fossil Record. Topics in Geobiology, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0161-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0161-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4947-1

  • Online ISBN: 978-1-4615-0161-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics