Predation on Bryozoans and its Reflection in the Fossil Record

Part of the Topics in Geobiology book series (TGBI, volume 20)


Bryozoans are present in many benthic marine habitats, where they range from minor to dominant ecological elements. At the present day and apparently throughout their history, bryozoans reached peak levels of taxonomic richness in middle to outer shelf locations (Bottjer and Jablonski, 1988; McKinney and Jackson, 1989; Clarke and Lidgard, 2000). Many shelf-depth carbonate deposits from the Middle Ordovician to the present have been dominated by their skeletal remains (James and Clark, 1997; Taylor and Allison, 1998). Predation intensity can be high in such shallow waters, and living bryozoans are the targeted or incidental prey of a wide diversity of predators, from fishes to pycnogonids.


Lower Devonian Colony Surface Bryozoan Coloni Cheilostome Bryozoan Frontal Shield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M. J., and Underwood, A. J., 1997, Effects of gastropod grazers on recruitment and succession of an estuarine assemblage: a multivariate and univariate approach, Oecologia (Berl.) 109:442–453.CrossRefGoogle Scholar
  2. Ayling, A. M., 1981, The role of biological disturbance in temperate subtidal encrusting communities, Ecology 62:830–847.CrossRefGoogle Scholar
  3. Baluk, W., and Radwanski, A., 1977, The colony regeneration and life habitat of free-living bryozoans, Cupuladria canadensis (Busk) and C. haidingeri (Reuss), from the Korytnica Clays (Middle Miocene; Holy Cross Mountains, Poland), Acta Geol. Pol. 27:143–156.Google Scholar
  4. Bancroft, A. J., 1986, The Carboniferous fenestrate bryozoan Hemitrypa hibernica M’Coy, Irish J. Earth Sci. 7:111–124.Google Scholar
  5. Banta, W. C., 1969, The body wall of cheilostome Bryozoa. II. Interzooidal communication organs, J. Morph. 129:149–170.CrossRefGoogle Scholar
  6. Barnawell, E. B., 1960, The carnivorous habit among the Polyplacophora, Veliger 2:85–88.Google Scholar
  7. Barnes, D. K. A., and Bullough, L. W., 1996, Some observations on the diet and distribution of nudibranchs at Signy Island, Antarctica, J. Moll. Stud. 62:281–287.CrossRefGoogle Scholar
  8. Bayer, M. M., Todd, C. D., Hoyle, J. E., and Wilson, J. F. B., 1997, Wave-related abrasion induces formation of extended spines in a marine bryozoan, Proc. R. Soc. Lond. B264:1605–1611.CrossRefGoogle Scholar
  9. Bell, J. D., Burchmore, J. J., and Pollard, D. A., 1978, Feeding ecology of three sympatric species of leatherjackets (Pisces: Monacanthidae) from a Posidonia habitat in New South Wales. Australian J. Mar. Freshw. Res, 29:631–643.CrossRefGoogle Scholar
  10. Best, B. A., and Winston, J. E., 1984, Skeletal strength of encrusting cheilostome bryozoans, Biol. Bull. 167:390–409.CrossRefGoogle Scholar
  11. Boardman, R. S., 1998, Reflections on the morphology, anatomy, evolution and classification of the Class Stenolaemata (Bryozoa), Smiths. Contrib. Paleobiol. 86:1–59.CrossRefGoogle Scholar
  12. Boardman, R. S., McKinney, F. K., and Taylor, P. D., 1992, Morphology, anatomy, and systematics of the Cinctiporidae, new family (Bryozoa: Stenolaemata), Smiths. Contrib. Paleobiol. 70:1–81.CrossRefGoogle Scholar
  13. Bottjer, D. J., and Jablonski, D., 1988, Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates, Palaios 3:540–560.CrossRefGoogle Scholar
  14. Bromley, R. G., and Hanken, N.-M., 1981, Shallow marine bioerosion at Vardo, arctic Norway. Bull. Geol. Soc. Denmark 29:103–109.Google Scholar
  15. Bromley, R. G., Hanken, N.-M., and Asgaard, U., 1990, Shallow marine bioerosion: preliminary results of an experimental study, Bull. Geol. Soc. Denmark 38:85–99.Google Scholar
  16. Buchner, P., 1918, Über totale Regeneration bei chilostomen Bryozoen, Biol. Zentralbl. 38(11):457–461.Google Scholar
  17. Buss, L. W., and Iverson, E. W., 1981, A new genus and species of Sphaeromatidae (Crustacea: Isopoda) with experiments and observations on its reproductive biology, interspecific interactions and color polymorphisms, Postilla 184:1–23.Google Scholar
  18. Carlé, J. S., and Christophersen, C., 1980, Dogger Bank Itch. The allergen is (2-Hydroxyethyl) dimethysulfoxonium ion, J. Am. Chem. Soc. 102:5107.CrossRefGoogle Scholar
  19. Carté, B., and Faulkner, D. J., 1986, Role of secondary metabolites in feeding associations between a predatory nudibranch, two grazing nudibranchs, and a bryozoan, J. Chem. Ecol. 12:795–804.CrossRefGoogle Scholar
  20. Cheetham, A. H., 1975, Taxonomic significance of autozooid size and shape in some early multiserial cheilostomes from the Gulf Coast of the U.S.A., Docum. Lab. Géol. Fac. Sci. Lyon — H.S. 3(2):547–564.Google Scholar
  21. Cheetham, A. H., 1986, Branching, biomechanics and bryozoan evolution, Proc. R. Soc. Lond. B 228:151–171.CrossRefGoogle Scholar
  22. Cheetham, A. H., and Thomsen, E., 1981, Functional morphology of arborescent animals: strength and design of cheilostome bryozoan skeletons, Paleobiology 7:355–383.Google Scholar
  23. Chessa, L. A., Scardi, M., Russu, P. and Fresi, E., 1990, The trophic role of four crustaceans in a Posidonia oceanica meadow of Sardinia, Italy, in: Trophic Relationships in the Marine Environment, Proceedings of the 24th European Marine Biology Symposium (M. Barnes and R. N. Gibson, eds), Aberdeen University Press, Aberdeen, pp. 347–355.Google Scholar
  24. Clarke, A. and Lidgard, S., 2000, Spatial patterns of diversity in the sea: bryozoan species richness in the North Atlantic, J. Anim. Ecol. 69:799–814.CrossRefGoogle Scholar
  25. Coleman, C. O., 1989, Gnathiphimedia mandibularis K. H. Barnard 1930, an Antarctic amphipod (Acanthonotozomatidae, Crustacea) feeding on Bryozoa, Ant. Sci. 1:343–344.CrossRefGoogle Scholar
  26. Cook, P. L., 1963, Observations on live lunulitiform zoaria of Polyzoa, Cah. Biol. Mar. 4:407–413.Google Scholar
  27. Cook, P. L., 1985. Bryozoa from Ghana — a preliminary survey, Kon. Mus. Midden-Afrika (Tevuren, België), Zool. Wetensch., Annals 238:1–315.Google Scholar
  28. Cook, P. L., and Chimonides, P. J., 1978, Observations on living colonies of Selenaria (Bryozoa, Cheilostomata). 1, Cah. Biol. Mar. 19:93–103.Google Scholar
  29. Cumings, E. R., 1904, Development of some Paleozoic Bryozoa, Am. J. Sci. 17:49–78.CrossRefGoogle Scholar
  30. Day, R. W., and Osman, R. W., 1981, Prédation by Patiria miniata (Asteroidea) on bryozoans: prey diversity may depend on the mechanism of succession, Oecologia (Berl.) 51:300–309.CrossRefGoogle Scholar
  31. Dyrynda, P. E. J., 1985a, Chemical defences and the structure of subtidal epibenthic communities, in: Proceedings of the 19 th European Marine Biology Symposium (P. E. Gibbs, ed.), Cambridge University Press, Cambridge, pp. 411–421.Google Scholar
  32. Dyrynda, P. E. J., 1985b, Functional allelochemistry in temperate waters: chemical defences of bryozoans, in: Bryozoa: Ordovician to Recent (C. Nielsen and G. P. Larwood, eds.), Olsen & Olsen, Fredensborg, pp. 95–100.Google Scholar
  33. Foster, M. S., 1975, Regulation of algal community development in a Macrocystis pyrifera forest, Mar. Biol. 32:331–342.CrossRefGoogle Scholar
  34. Gibson, M. A., and Watson, J. B., 1989, Predatory and non-predatory borings in echinoids from the upper Ocala Formation (Eocene), north-central Florida, Palaeogeogr. Palaeoclimatol. Palaeoecol. 71:309–321.CrossRefGoogle Scholar
  35. Gordon, D. P., 1972, Biological relationships of an intertidal bryozoan population, J. Nat. Hist. 6:503–514.CrossRefGoogle Scholar
  36. Gordon, D. P., 1993, Bryozoa: The ascophorine infraorders Cribriomorpha, Hippothoomorpha and Umbonulomorpha mainly from New Caledonian waters, Mém. Mus. Natn. Hist. Nat., (A) 158:299–347.Google Scholar
  37. Gordon, D. P., 2000, Towards a phylogeny of cheilostomes — morphological models of frontal wall/shield evolution, in: Proceedings of the 11th International Bryozoology Association Conference (A. Herrera Cubilla and J. B. C. Jackson, eds.), Smithsonian Tropical Research Institute, Balboa pp. 17–37.Google Scholar
  38. Gordon, D. P., and d’Hondt, J.-L., 1991, Bryozoa: The Miocene to Recent family Petalostegidae. Systematics, affinities, biogeography, Mém. Mus. Natn. Hist. Nat., (A), 151:91–123.Google Scholar
  39. Gordon, D. P., and Voigt, E., 1996, The kenozooidal origin of the ascophorine hypostegal coelom and associated frontal shield, in: Bryozoans in Space and Time (D. P. Gordon, A. M. Smith, and J. A. Grant-Mackie, eds.), NIWA, Wellington, pp.89–107Google Scholar
  40. Haderlie, E. C., 1969, Marine fouling and boring organisms in Monterey harbor II: second year of investigation, Veliger 12: 182–192.Google Scholar
  41. Håkansson, E., and Thomsen, E., 2001, Asexual propagation in cheilostome Bryozoa, in: Evolutionary Patterns (J. B. C. Jackson, S. Lidgard, and F. K. McKinney, eds.), University of Chicago Press, Chicago, pp. 326–347.Google Scholar
  42. Harmer, S. F., 1901, Bryozoa in Britain, Trans. Norfolk Norwich Nat. Soc., 7:115–137.Google Scholar
  43. Harvell, C. D., 1984, Predator-induced defense in a marine bryozoan, Science 224:1357–1359.CrossRefGoogle Scholar
  44. Harvell, C. D., 1986, The ecology and evolution of inducible defenses in a marine bryozoan: cues, costs, and consequences, Am. Nat. 128:810–823.CrossRefGoogle Scholar
  45. Hayward, P. J., and Ryland, J. S., 1985, Cyclostome bryozoans, Syn. Br. Fauna (n.s.) 34:1–147.Google Scholar
  46. Hayward, P. J., and Ryland, J. S., 1995, The British species of Schizoporella (Bryozoa: Cheilostomatida), J. Zool., Lond. 237:37–47.CrossRefGoogle Scholar
  47. Hughes, T. P., 1980, Recruitment limitation, mortality, and population regulation in open systems: a case study, Ecology 71:12–20.CrossRefGoogle Scholar
  48. Hyman, L. H., 1959, The Invertebrates: Volume 5, Smaller Coelomate Groups, McGraw-Hill, New York.Google Scholar
  49. Jablonski, D., Lidgard, S., and Taylor, P. D., 1997, Comparative ecology of bryozoan radiations: origin of novelties in cyclostomes and cheilostomes, Palaios 12:505–523.CrossRefGoogle Scholar
  50. Jackson, J. B. C., 1983, Biological determinants of present and past sessile animal distributions, in: Biotic Interactions in Recent and Fossil Benthic Communities (M. J. S. Tevesz, and P. L. McCall, eds.), Plenum Publishing Corporation, New York, pp. 39–120.Google Scholar
  51. Jackson, J. B. C., and McKinney, F. K, 1990, Ecological processes and progressive macroevolution of marine clonal benthos, in: Causes of Evolution (R. M. Ross, and W. D. Allmon, eds.), University of Chicago Press, Chicago, pp. 173–209.Google Scholar
  52. Jackson, J. B. C., and Winston, J. E., 1982, Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms, J. Exper. Mar. Biol. Ecol. 57:135–147.CrossRefGoogle Scholar
  53. James, N. P., and Clarke, J. A. D., eds., 1997, Cool-Water Carbonates, SEPM Spec. Pub. 56.Google Scholar
  54. Joubert, C. S. W., and Hanekom, P. B., 1980, A study of feeding in some inshore reef fish of the Natal Coast, South Africa, South African J. Zool. 15:262–274.Google Scholar
  55. Kay, A. M., and Keough, M. J., 1981, Occupation of patches in the epifaunal communities on pier pilings and the bivalve Pinna bicolor at Edithburgh, South Australia, Oecologia 48:123–130.CrossRefGoogle Scholar
  56. Keough, M. J., and Downs, B. J., 1982, Recruitment of marine invertebrates: the role of active larval choices and early mortality, Oecologia (Berl.) 54:348–352.CrossRefGoogle Scholar
  57. Lagaaij, R., 1963, Cupuladria canadensis (Busk) — portrait of a bryozoan, Palaeontology 6:172–217.Google Scholar
  58. Larwood, G. P., 1969, Frontal calcification and its function in some Cretaceous and Recent cribrimorph and other cheilostome Bryozoa, Bull. Br. Mus. (Nat. Hist.) Zool. 18(5):173–182.Google Scholar
  59. Levinsen, G. M. R., 1907, Sur la régenération totale des Bryozoaires, Overs. Kgl. Danske vidensk. Selsk. Forhandl. 1907(4):151–159.Google Scholar
  60. Mauzey, K. P., Birkeland, C., and Dayton, P.K., 1968, Feeding behavior of asteroids and escape responses of their prey in the Puget Sound region, Ecology 49:603–619.CrossRefGoogle Scholar
  61. McKinney, F. K., 1987, Paleobiological interpretation of some skeletal characters of Lower Devonian fenestrate Bryozoa, Prague Basin, Czechoslovakia, in: Bryozoa: Present and Past (J. R. P. Ross, ed.), Western Washington University, Bellingham, pp. 161–168.Google Scholar
  62. McKinney, F. K., 1989, Two patterns of colonial water flow in an erect bilaminate bryozoan, the cheilostome Schizotheca serratimargo (Hincks, 1886), Cah. Biol. Mar. 30:35–48.Google Scholar
  63. McKinney, F. K., 1998, Avicularia-like structures in a Paleozoic fenestrate bryozoan, J. Paleontol. 72:819–826.Google Scholar
  64. McKinney, F. K., and Jackson, J. B. C., 1989, Bryozoan Evolution, Unwin & Hyman, Boston.Google Scholar
  65. McKinney, F. K., and Kriz, J., 1986, Lower Devonian Fenestrata (Bryozoa) of the Prague Basin, Barrandian Area, Bohemia, Czechoslovakia, Fieldiana (GeoL), n. ser. 15:1–90.Google Scholar
  66. Morales-Ríos, M. S., Suárez-Castillo, O. R., Trujillo-Serrato, J. J., and Joseph-Nathan, P., 2001, Total syntheses of five indole alkaloids from the marine bryozoan Flustra foliacea, J. Org. Chem. 66:1186–1192.CrossRefGoogle Scholar
  67. Nielsen, C., and Pedersen, K. G., 1979, Cystid structure and protrusion of the polypide in Crista (Bryozoa, Cyclostomata), Acta Zool. (Stockh.) 60:65–88.CrossRefGoogle Scholar
  68. Osburn, R. C., 1921, Bryozoa as food for other animals, Science 53:451–453.CrossRefGoogle Scholar
  69. Osman, R. W., Whitlatch, R. B., Malatesta, R. J., and Zajac, R. N., 1990, Ontogenetic changes in trophic relationships and their effects on recruitment, in: Trophic Relationships in the Marine Environment, Proceedings of the 24th European Marine Biology Symposium (M. Barnes and R. N. Gibson, eds). Aberdeen University Press, Aberdeen, pp. 117–129.Google Scholar
  70. Ostrovsky, A. N., 1998, Comparative studies of ovicell anatomy and reproductive patterns in Cribrilina annulata and Celleporella hyalina (Bryozoa: Cheilostomatida), Acta Zool. 79:287–318.CrossRefGoogle Scholar
  71. Pitt, L. J., and Taylor, P. D., 1990, Cretaceous Bryozoa from the Faringdon Sponge Gravel (Aptian) of Oxfordshire, Bull. Br. Mus. Nat. Hist. (Geol.) 46:61–152.Google Scholar
  72. Poluzzi, A., 1980, I Briozoi membraniporiformi del delta settentrionale del Po, Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 121:101–120.Google Scholar
  73. Randall, J. E., 1967, Food habits of reef fishes of the West Indies, Stud. Trop. Oceanogr. (Miami) 5:665–847.Google Scholar
  74. Russ, G. R., 1980, Effects of predation by fishes: competition and structural complexity of the substrate on the establishment of a marine epifaunal community, J. Exper. Mar. Biol. Ecol. 42:55–70.CrossRefGoogle Scholar
  75. Russ, G. R., 1982, Overgrowth in a marine epifaunal community: competitive hierarchies and competitive networks, Oecologia 53:12–19.CrossRefGoogle Scholar
  76. Ryland, J. S., 1970, Bryozoans, Hutchinson University Press, London.Google Scholar
  77. Ryland, J. S., 1976, Physiology and ecology of marine bryozoans, Adv. Mar. Biol., 14:285–443.CrossRefGoogle Scholar
  78. Schaumberg, G., 1979, Neue Nachweise von Bryozoen und Brachiopoden Nahrung des permischen Holocephalen, Janass bituminosa (Schlotheim), Philippia 4: 3–11.Google Scholar
  79. Silén, L., 1977, Polymorphism, in: Biology of Bryozoans (R. M. Woolacott and R. L. Zimmer, eds), Academic Press, New York, pp. 183–231.Google Scholar
  80. Silén, L., and Harmelin, J.-G., 1974, Observations on living Diastoporidae (Bryozoa Cyclostomata), with special regard to polymorphism, Acta Zool. (Stockh.) 55:81–96.CrossRefGoogle Scholar
  81. Snyder, E., 1987, Bryozoan succession in the Warsaw Formation (Valmeyeran, Mississippian) of the Mississippi Valley, USA, in: Bryozoa: Present and Past (J. R. P. Ross, ed.), Western Washington University, Bellingham, pp. 245–252.Google Scholar
  82. Stebbing, A. R. D., 1973, Observations on colony overgrowth and spatial competition, in: Living and Fossil Bryozoa (G. P. Larwood, ed.), Academic Press, London, pp. 173–183.Google Scholar
  83. Stekhoven, J. H., Jr., 1933, Die Nahrung von Oncholaimus dujardiniide Man. Zool. Anzeiger 101:167–168.Google Scholar
  84. Tavener-Smith, R., 1975, The phylogenetic affinities of fenestelloid bryozoans, Palaeontology 18:1–17.Google Scholar
  85. Taylor, P. D., 1982, Probable predatory borings in Late Cretaceous bryozoans, Lethaia 15:67–74.CrossRefGoogle Scholar
  86. Taylor, P. D., 1985, Polymorphism in melicerititid cyclostomes, in: Bryozoa: Ordovician to Recent (C. Nielsen and G. P. Larwood, eds.), Olsen & Olsen, Fredensborg, pp. 311–318.Google Scholar
  87. Taylor, P. D., 1988a, Colony growth pattern and astogenetic gradients in the Cretaceous cheilostome bryozoan Herpetopora, Palaeontology 31:519–549.Google Scholar
  88. Taylor, P. D., 1988b, Major radiation of cheilostome bryozoans: triggered by the evolution of a new larval type?, Hist. Biol. 1:45–64.CrossRefGoogle Scholar
  89. Taylor, P. D., 1994a, Systematics of the melicertitid cyclostome bryozoans; introduction and the genera Elea, Semielea and Reptomultelea, Bull. Nat. Hist. Mus. Lond. (Geol.) 50:1–103.Google Scholar
  90. Taylor, P. D. 1994b, An early cheilostome bryozoan from the Upper Jurassic of Yemen, N. Jahrb. Geol. Paläont. Abh. 191:331–344.Google Scholar
  91. Taylor, P. D., 1999, Bryozoan, in: Functional Morphology of the Invertebrate Skeleton (Savazzi, E., ed.), Wiley, Chichester, pp. 623–646.Google Scholar
  92. Taylor, P. D., and Allison, P. A., 1998, Bryozoan carbonates through space and time, Geology 26:459–462.CrossRefGoogle Scholar
  93. Taylor, P. D., and Monks, N., 1997, A new cheilostome bryozoan genus pseudoplanktonic on molluscs and algae, Invert. Biol. 116:39–51.CrossRefGoogle Scholar
  94. Taylor, P. D., and Wilson, M. A., 1999, Middle Jurassic bryozoans from the Carmel Formation of southwestern Utah, J. Paleontol. 73:816–830.Google Scholar
  95. Thompson, J. N., 1982, Interaction and Coevolution, Wiley, New York.Google Scholar
  96. Todd, C. D. and Havenhand, J. N., 1989, Nudibranch-bryozoan associations, the quantification of ingestion and some observations on partial predation among Doridoidea, J. Mollusc. Stud. 55:245–259.CrossRefGoogle Scholar
  97. Todd, J. A., 2000, The central role of ctenostomes in bryozoan phylogeny, in: Proceedings of the 11th International Bryozoology Association Conference (A. Herrera Cubilla, and J. B. C. Jackson, eds.), Smithsonian Tropical Research Institute, Balboa, Republic of Panama, pp. 104–135.Google Scholar
  98. Turner, R. F., 1975, A new Cretaceous cribrimorph from North America with calcareous opercula, Doc. Lab. Géol. Fac. Sci. Lyon, H. S. 3:273–279.Google Scholar
  99. Turner, S. J., and Todd, C. D., 1991, The effects of Gibbula cineraria (L.), Nucella lapillus (L.) and Asterias rubens L. on developing epifaunal assemblages, J. Exper. Mar. Biol. Ecol. 154:191–213.CrossRefGoogle Scholar
  100. Underwood, A. J., and Fairweather, P. G., 1992, Marine invertebrates, in: Natural Enemies: the Population Biology of Predators, Parasites, and Diseases (J. M. Crawley, ed.), Blackwell Scientific, Oxford, pp 205–224.Google Scholar
  101. Vance, R. R., 1979, Effects of grazing by the sea urchin, Centrostephanus coronatus, on prey communitycomposition, Ecology 60:537–546.CrossRefGoogle Scholar
  102. Vermeij, G. J., 1987, Evolution and Escalation: An Ecological History of Life, Princeton University Press, Princeton.Google Scholar
  103. Vietti, R. C., and Balduzzi, A., 1991, Relationship between radular morphology and food in the Doridina (Mollusca: Nudibranchia), Malacologia 32:211–217.Google Scholar
  104. Voigt, E., 1989, Beitrag zur Bryozoen-Fauna des sächsischen Cenomaniums. Revision von A. E. Reuss’ “Die Bryozoen des unteren Quaders” in H. B. Geinitz’ “Das Elbthalgebirge in Sachsen” (1872,), Abh. Staatl. Mus. Min. Geol. Dresden 36:8–87, 170–183, 189–208.Google Scholar
  105. Voigt, E., 1993, Neue cribrimorphe Bryozoen (Fam. Pelmatoporidae) aus einem Maastrichtium Schrebkreide-Geschiebe von Zweedorf (Holstein), Mitt. Geol.-Paläont. Inst. Univ. Hamburg 75:137–169.Google Scholar
  106. Voigt, E., and Flor, F. D., 1970, Homöomorphien bei fossilen cyclostomen Bryozoen, dargestellt am Beispiel der Gattung Spiropora Lamouroux 1821, Mitt. Geol.-Paläont. Inst. Univ. Hamburg 39:7–96.Google Scholar
  107. Voigt, E., and Williams, A., 1973, Revision des genus Inversaria v. Hagenow 1851 (Bryoz. Cheil.) und seine Beziehungen zu Solenonychocella n. g., Nachr. Akad. Wiss. Göttingen, II Math.-Physik. Kl. 8:140–178.Google Scholar
  108. Walters, L. J., 1992, Post-settlement success of the arborescent bryozoan Bugula neritina (L.): the importance of structural complexity, J. Exper. Mar. Biol. Ecol. 164:55–71.CrossRefGoogle Scholar
  109. Walters, L. J., and Wethey, D. S., 1991, Settlement, refuges, and adult body form in colonial marine invertebrates: a field experiment, Biol. Bull. 180:112–118.CrossRefGoogle Scholar
  110. Walters, L. J., and Wethey, D. S., 1996, Settlement and early post-settlement survival of sessile marine invertebrates on topographically complex surfaces: the importance of refuge dimensions and adult morphology, Mar. Ecol. Prog. Ser. 137:161–171.CrossRefGoogle Scholar
  111. Whitehead, J. D., Seed, R. and Hughes, R. N., 1996, Factors controlling spinosity in the epialgal bryozoans Flustrellidra hispida (Fabricius), in: Bryozoans in Space and Time: Proceedings of the 10th International Bryozoology Conference (D. P. Gordon, A. M. Smith, and J. A. Grant-Mackie, eds), National Institute of Water and Atmospheric Research, Wellington, pp.367–375.Google Scholar
  112. Winston, J. E., 1984, Why bryozoans have avicularia — a review of the evidence, Am. Mus. Novitates 2789:1–26.Google Scholar
  113. Winston, J. E., 1986, Victims of avicularia, Mar. Ecol. (Berl.) 7:193–199.CrossRefGoogle Scholar
  114. Winston, J. E., and Jackson, J. B. C., 1984, Ecology of cryptic coral reef communities. IV. Community development and life histories of encrusting cheilostome Bryozoa, J. Exp. Mar. Biol. Ecol. 76:1–21.CrossRefGoogle Scholar
  115. Witman, J. D., and Grange, K. R., 1998, Links between rain, salinity, and predation in a rocky subtidal community, Ecology 79:2429–2447.CrossRefGoogle Scholar
  116. Wyer, D. W., and King, P. E., 1973, Relationships between some British littoral and sublittoral bryozoans and pycnogonids, in: Living and Fossil Bryozoa (G. P. Larwood, ed.), Academic Press, London, pp. 199–207.Google Scholar
  117. Yoshioka, P. M., 1982, Predator-induced polymorphism in the bryozoan Membranipora membranacea (L.), J. Exper. Mar. Biol. Ecol. 61:233–242.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Department of GeologyAppalachian State UniversityBooneUSA
  2. 2.Department of PalaeontologyThe Natural History MuseumLondonUK
  3. 3.Department of GeologyThe Field MuseumChicagoUSA

Personalised recommendations