Leptin and Hypothalamic Amenorrhea

  • Michelle P. Warren
  • Jennifer E. Dominguez


Amenorrhea is characterized by the lack of regular menstrual periods. It may be classified as primary or secondary in nature. Primary amenorrhea is a delay in menarche beyond the age of 14, if no secondary sexual characteristics have developed, and beyond the age of 16, if secondary sexual characteristics have developed (Sakala, 1997). Secondary amenorrhea is diagnosed when menstruation has been absent for more than 3 months, if menses were previously regular; or 6 months, if menses were irregular (Constantini and Warren, 1994). The causes of amenorrhea among premenopausal women are numerous, among them are premature ovarian failure, past contraceptive use, androgen excess, intensive physical training, nutritional restriction, and stress.


Bone Mineral Density Luteinizing Hormone Anorexia Nervosa Eating Disorder Female Athlete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, S. F., Beumont, P. J. V., Fraser, I. S., and Llewellyn-Jones, D. (1982). Body weight, exercise and menstrual status among ballet dancers in training. Br. J. Obstet. Gynaecol., 89, 507–510.PubMedCrossRefGoogle Scholar
  2. Al-Othman, F. N. and Warren, M. P. (1998). Exercise, the menstrual cycle, and reproduction. Infertil. Reprod. Med. Clin. North Am., 9, 667–687.Google Scholar
  3. Arnaud, C. D. (1996). Osteoporosis: using “bone markers” for diagnosis and monitoring. Geriatrics, 51, 24–30.PubMedGoogle Scholar
  4. Bachrach, L. K., Katzman, D. K., Litt, I. F., Guido, D., and Marcus, R. (1991). Recovery from osteopenia in adolescent girls with anorexia nervosa. J. Clin. Endocrinol. Metab., 72, 602–606.PubMedCrossRefGoogle Scholar
  5. Baker, D., Roberts, R., and Towell, T. (2000). Factors predictive of bone mineral density in eating-disordered women: a longitudinal study. Int. J. Eat. Disord., 27, 29–35.PubMedCrossRefGoogle Scholar
  6. Barr, S. I. and McKay, H. A. (1998). Nutrition, exercise, and bone status in youth. Int. J. Sports Med., 8, 124–142.CrossRefGoogle Scholar
  7. Bass, S. L. and Myburgh, K. H. (2000). The role of exercise in the attainment of peak bone mass and bone strength. In M. P. Warren and N. W. Constantini (Eds.). Contemporary Endocrinology: Sports Endocrinology, Humana Press Inc., Totowa, NJ, pp. 253–280.CrossRefGoogle Scholar
  8. Beaumont, P. J. V., George, G. C. W., Pimstone, B. L., and Vinik, A. L. (1976). Body weight and pituitary response to hypothalamic releasing hormone in patients with anorexia nervosa. J. Clin. Endocrinol. Metab., 43, 487.CrossRefGoogle Scholar
  9. Bennell, K. L., Malcolm, S. A., Wark, J. D., et al. (1997). Skeletal effects of menstrual disturbances in athletes. Scand. J. Med. Sci. Sports, 7, 261–273.PubMedCrossRefGoogle Scholar
  10. Biller, B. M. K., Saxe, V., Herzog, D. B., Rosenthal, D. I., Holzman, S., and Klibanski, A. (1989). Mechanisms of osteoporosis in adult and adolescent women with anorexia nervosa. J. Clin. Endocrinol. Metab., 68, 548–554.PubMedCrossRefGoogle Scholar
  11. Biller, B. M. K., Schoenfeld, D., and Klibanski, A. (1993). Premenopausal osteopenia: effects of estrogen administration (Abstract#1616). Endocrine Society Annual Meeting, 75, 454.Google Scholar
  12. Boyar, R. M. and Bradlow, H. L. (1977). Studies of testosterone metabolism in anorexia nervosa. In R. Vigersky (Ed.). Anorexia Nervosa. New York: Raven Press, p. 271.Google Scholar
  13. Boyar, R. M., Hellman, L. D., Roffwarg, H., Katz, J., Zumoff, B., O’Connor, J., Bradlow, H. L., and Fukushima, D. K. (1977). Cortisol secretion and metabolism in anorexia nervosa. N. Engl. J. Med., 296, 190–193.PubMedCrossRefGoogle Scholar
  14. Boyar, R. M., Katz, J., Finkelstein, J. W., Kapen, S., Weiner, H., Weitzman, E. D., and Hellman, L. D. (1974). Anorexia nervosa: immaturity of the 24-hour luteinizing hormone secretory pattern. N. Engl. J. Med., 291, 861–865.PubMedCrossRefGoogle Scholar
  15. Bronson, F. H. and Manning, J. M. (1991). The energetic regulation of ovulation: a realistic role for body fat. Biol. Reprod., 44, 945–950.PubMedCrossRefGoogle Scholar
  16. Brooks-Gunn, J., Warren, M. P., and Hamilton, L. H. (1987). The relation of eating problems and amenorrhea in ballet dancers. Med. Sci. Sports Exerc., 79(1), 41–44.Google Scholar
  17. Brotman, A. W. and Stern, T. A. (1985). Osteoporosis and pathological fractures in anorexia nervosa. Am. J. Psychiatry., 142, 495–496.PubMedGoogle Scholar
  18. Bruni, V., Dei, M., Vicini, I., Beninato, L., and Magnani, L. (2000). Estrogen replacement therapy in the man agement of osteopenia related to eating disorders. Ann. N. Y. Acad. Sci., Abstract, 900, 416–421.CrossRefGoogle Scholar
  19. Burguera, B., Hofbauer, L., Thomas, T., Gori, F., Evans, G., Khosla, S., Riggs, B., and Turner, R. (2001). Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology, 142, 3546–3553.PubMedCrossRefGoogle Scholar
  20. Cameron, J. L. (1989). Influence of nutrition on the hypothalamic-pituitary-gonadal axis in primates. In K. M. Pirke, W. Wuttke, and U. Schweiger (Eds.). The Menstrual Cycle and Its Disorders, Springer- Verlag, Heidelberg, pp. 66–78.CrossRefGoogle Scholar
  21. Cameron, J. L., Nosbisch, C., Helmreich, D. L., and Parfitt, D. B. (1990). Reversal of exercise-induced amenorrhea in female cynomolgus monkeys (Macaca fascicularis) by increasing food intake (Abstract #1042). Endocrine Society Annual Meeting, 72, 285.Google Scholar
  22. Carruth, B. R. and Skinner, J. D. (2000). Bone mineral status in adolescent girls: effects of eating disorders and exercise. J. Adolesc. Health., 26, 322–329.PubMedCrossRefGoogle Scholar
  23. Cheung, C. C., Clifton, D. K., and Steiner, R. A. (1997). Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology, 138, 4489–4492.PubMedCrossRefGoogle Scholar
  24. Cioffi, J., Shafer, A., and Zupancic, T. (1966). Novel B219/OB receptor isoforms: possible role of leptin in hematopoieses and reproduction. Nature Med., 2, 585–588.Google Scholar
  25. Constantini, N. W. and Warren, M. P. (1994). Physical activity, fitness, and reproductive health in women: clinical observations. In C. Bouchard, R. I. Shephard, and T. Stephens (Eds.). Physical Activity, Fitness, and Health: International Proceedings and Consensus Statement, Human Kinetics, Champaign, pp. 955–966.Google Scholar
  26. Couzinet, B., Young, J., Brailly, S., Le Bouc, Y., Chanson, P., and Schaison, G. (1999). Functional hypothalamic amenorrhoea: a partial and reversible gonadotrophin deficiency of nutritional origin. Clin. Endocrinol. (Oxf.), 50, 229–235.CrossRefGoogle Scholar
  27. Cumming, D. C. (1996). Exercise-associated amenorrhea, low bone density, and estrogen replacement therapy. Archives of Internal Medicine, 756(19), 2193–2195.CrossRefGoogle Scholar
  28. DeCree, C., Lewin, R., and Ostyn, M. (1988). Suitability of cyproterone acetate in the treatment of osteoporosis associated with athletic amenorrhea. Int. J. Sports Med., 9, 187–192.CrossRefGoogle Scholar
  29. Devlin, M. J., Walsh, B. T., Kral, J. G., Heymsfield, S. B., Pi-Sunyer, F. X., and Dantzic, S. (1990). Metabolic abnormalities in bulimia nervosa. Arch. Gen. Psychiatry 47, 144–148.PubMedCrossRefGoogle Scholar
  30. Dhuper, S., Warren, M. P., Brooks-Gunn, J., and Fox, R. P. (1990). Effects of hormonal status on bone density in adolescent girls. J. Clin. Endocrinol. Metab., 71, 1083–1088.PubMedCrossRefGoogle Scholar
  31. Ding, J. H., Sheckter, C. B., Drinkwater, B. L., Soules, M. R., and Bremner, W. J. (1988). High serum cortisol levels in exercise-associated amenorrhea. Ann. Intern. Med., 108, 530–534.PubMedGoogle Scholar
  32. Drinkwater, B. L., Bruemner, B., and Chesnut, C. H., III (1990). Menstrual history as a determinant of current bone density in young athletes. JAMA, 263, 545–548.PubMedCrossRefGoogle Scholar
  33. Drinkwater, B. L., Nilson, K., Chesnut, C. H., III, Bremner, W. J., Shainholtz, S., and Southworth, M. B. (1984). Bone mineral content of amenorrheic and eumenorrheic athletes. N. Engl. J. Med., 311(5), 277–281.PubMedCrossRefGoogle Scholar
  34. Dubey, A. K., Cameron, J. L., Steiner, R. A., and Plant, T. M. (1986). Inhibition of gonadotropin secretion in castrated male rhesus monkeys (Macaca mulatta) induced by dietary restriction: analogy with the prepubertal hiatus of gonadotropin release. Endocrinology, 118, 518–525.PubMedCrossRefGoogle Scholar
  35. Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A. F., Beil, F. T., Shen, J., Vinson, C., Rueger, J. M., and Karsenty, G. (2000). Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell, 100, 197–207.PubMedCrossRefGoogle Scholar
  36. Falk, J. R. and Halmi, K. A. (1982). Amenorrhea in anorexia nervosa: examination of the critical body weight hypothesis. Biol. Psychiatry, 17, 799–806.PubMedGoogle Scholar
  37. Feicht, C. B., Johnson, T. S., and Martin, B. J. (1978). Secondary amenorrhea in athletes. Lancet, 2, 1145–1146.PubMedCrossRefGoogle Scholar
  38. Ferin, M., Jewelewicz, R., and Warren, M. P. (1993) The Menstrual Cycle. Oxford University Press, New York.Google Scholar
  39. Fisher, E. C, Nelson, M. E., Frontera, W. R., et al. (1986). Bone mineral content and levels of gonadotropins and estrogen in amenorrheic running women. J. Clin. Endocrinol. Metab., 62, 1232–1236.PubMedCrossRefGoogle Scholar
  40. Fohlin, L. (1975). Exercise, performance, and body dimensions in anorexia nervosa before and after rehabilitation. Acta. Med. Scand., 204, 61.CrossRefGoogle Scholar
  41. Fowler, P. B. S., Banim, S. O., and Ikram, H. (1972). Prolonged ankle reflex in anorexia nervosa. Lancet, 2, 307.PubMedCrossRefGoogle Scholar
  42. Fritz, M. A. and Speroff, L. (1983). Current concepts of the endocrine characteristics of normal menstrual function: the key to diagnosis and management of menstrual disorders. Clin. Obstet. Gynecol, 26, 647–689.PubMedCrossRefGoogle Scholar
  43. Genazzani, A. R., Petraglia, F., Bernardi, F., Casarosa, E., Salvestroni, C., Tonetti, A., Nappi, R. E., Luisi, S., Palumbo, M., Purdy, R. H., and Luisi, M. (1998). Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J. Clin. Endocrinol. Metab., 83, 2099–2103.PubMedCrossRefGoogle Scholar
  44. Gibson, J. H., Mitchell, A., Reeve, J., and Harries, M. G. (1999). Treatment of reduced bone mineral density in athletic amenorrhea: a pilot study. Osteoporos. Int., 10, 284–289.PubMedCrossRefGoogle Scholar
  45. Glass, A. R., Deuster, P. A., Kyle, S. B., Yahiro, J. A., Vigersky, R. A., and Schoomaker, E. B.(1987). Amenorrhea in Olympic marathon runners. Fertility and Sterility, 48, 740–745.PubMedGoogle Scholar
  46. Gold, P., Gwirtsman, H., Avgerinos, P., Nieman, L., Gallucci, W., Kaye, W., Jimerson, D., Ebert, M., Rittmaster, R., Loriaux, L., and Chrousos, G. (1986). Abnormal hypothalamic-pituitary-adrenal function in anorexia nervosa. N. Engl. J. Med., 314, 1335–1342.PubMedCrossRefGoogle Scholar
  47. Goulding, A. and Taylor, R. W. (1998). Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calcif. Tissue Int., 63, 456–458.PubMedCrossRefGoogle Scholar
  48. Grinspoon, S., Miller, K. K., and Coyle, C. (1999). Severity of osteopenia in estrogen-deficient women with anorexia nervosa and hypothalamic amenorrhea. J. Clin. Endcrinol. Metab., Abstract, 68, 402–411.Google Scholar
  49. Grinspoon, S., Thomas, E., Pitts, S., Gross, E., Mickley, D., Miller, K., Herzog, D., and Klibanski, A. (2000). Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann. Intern. Med., 133, 790–794.PubMedGoogle Scholar
  50. Hartman, D., Crisp, A., Rooney, B., Rackow, C., Atkinson, R., and Patel, S. (1999). Bone density of women who have recovered from anorexia nervosa. Int. J. Eat. Dis., Abstract, 28(1), 107–112.CrossRefGoogle Scholar
  51. Hay, P., Delahunt, J. W., Hall, A., Mitchell, A. W., Harper, G., and Salmond, C. (1992). Predictors of osteopenia in premenopausal women with anorexia nervosa. Calcif. Tissue Int., 50, 498–501.PubMedCrossRefGoogle Scholar
  52. Helmreich, D. L., Mattern, L. G., and Cameron, J. L. (1993). Lack of a role of the hypothalamic-pituitaryadrenal axis in the fasting-induced suppression of luteinizing hormone secretion in adult male rhesus monkeys (Macaca mulatta). Endocrinology, 132, 2427–2437.Google Scholar
  53. Hergenroeder, A. C., O’Brian Smith, E., Shypailo, R., et al. (1997). Bone mineral changes in young women with hypothalamic amenorrhea treated with oral contraceptives, medroxyprogesterone, or placebo over 12 months. Am. J. Obstet. Gynecol., 176, 1017–1025.PubMedCrossRefGoogle Scholar
  54. Hoggard, N., Hunter, L., Duncan, J. S., Williams, L. M., Trayhurn, P., and Mercer, J. G. (1997). Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc. Natl. Acod. Sci. USA, 94, 11073–11078.CrossRefGoogle Scholar
  55. Hotta, I., Shebasoki, K., Masuda, A., Imaki, T., Hiroshi, D., Ling, N., and Shizume, K. (1986) The responses of plasma adrenocorticotropin and cortisol to corticotropin releasing hormone (CRH) and cerebrospinal fluid immunoreactive CRH in anorexia nervosa patients. J. Clin. Endocrinol. Metab., 62, 319–324.PubMedCrossRefGoogle Scholar
  56. Jonnavithula, S., Warren, M. P., Fox, R. P., and Lazaro, M. I. (1993). Bone density is compromised in amenorrheic women despite return of menses: a 2-year study. Obstet. Gynecol., 81, 669–674.PubMedGoogle Scholar
  57. Kanders, B., Dempster, D. W., and Lindsay, R. (1988). Interaction of calcium nutrition and physical activity on bone mass in young women. J. Bone Miner. Res., 3(2), 145–149.PubMedCrossRefGoogle Scholar
  58. Katz, J. L., Boyar, R. M., Roffwarg, H., Hellman, L., and Weiner, H. (1978). Weight and circadian luteinizing hormone secretory pattern in anorexia nervosa. Psychosom. Med., 40, 549–567.PubMedGoogle Scholar
  59. Kaufman, B. A., Warren, M. P., Dominguez, J. E., Wang, J., Heymsfield, S. B., and Pierson, R. N. (2002). Bone density and amenorrhea in ballet dancers are related to a decreased resting metabolic rate and lower leptin levels. J. Clin. Endocrinol. Metab. 2002; 87(6): 2777–2783.CrossRefGoogle Scholar
  60. Khan, K. M., Warren, M. P., Stiehl, A., McKay, H. A., and Wark, J. D. (1999). Bone mineral density in active and retired ballet dancers. J. Dance Med. Sci., 3, 15–23.Google Scholar
  61. Kiyohara, K., Tamai, H., Takaichi, Y., Nakagawa, T., and Kumagai, L. F. (1989). Decreased thyroidal triiodothyronine secretion in patients with anorexia nervosa: influence of weight recovery. Am. J. Clin. Nutr., 50, 161–112.Google Scholar
  62. Klibanski, A., Biller, B. M. K., Schoenfeld, D. A., Herzog, D. B., and Saxe, V. C. (1995). The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J. Clin. Endocrinol. Metab., 80, 898–904.PubMedCrossRefGoogle Scholar
  63. Kohmura, H., Miyake, A., Aono, T., and Tanizawa, O. (1986). Recovery of reproductive function in patients with anorexia nervosa: a 10-year follow up study. Eur. J. Obstet. Gynecol. Reprod. Biol. 22, 293–296.PubMedCrossRefGoogle Scholar
  64. Kopp, W., Blum, W. F., von Prittwitz, S., Ziegler, A., Lubbert, H., Emons, G., Herzog, W., Herpertz, S., Deter, H. C, Remschmidt, H., and Hebebrand, J. (1997). Low leptin levels predict amenorrhea in underweight and eating disordered females. Mol. Psychiatry, 2, 335–340.PubMedCrossRefGoogle Scholar
  65. Kreipe, R. E. (1992). Bones of today, bones of tomorrow (editorial). Am. J. Dis. Child, 146, 22–25.PubMedGoogle Scholar
  66. Kreipe, R. E. and Forbes, G. B. (1990). Osteoporosis: a “new morbidity” for dieting female adolescents? Pediatrics 86, 478–480.PubMedGoogle Scholar
  67. Kreipe, R. E., Churchill, B. H., and Strauss, J. (1989a). Long-term outcome of adolescents with anorexia nervosa. Am. J. Dis. Child, 143, 1322–1327.PubMedGoogle Scholar
  68. Kreipe, R. E., Hicks, D. G., Rosier, R. N., and Puzas, J. E. (1993). Preliminary findings on the effects of sex hormones on bone metabolism in anorexia nervosa. J. Adolesc. Health, 14, 319–324.PubMedCrossRefGoogle Scholar
  69. Kreipe, R. E., Strauss, J., Hodgeman, C. H., and Ryan, R. M. (1989b). Menstrual cycle abnormalities and subclinical eating disorders: a preliminary report. Psychosom. Med., 51, 81–86.PubMedGoogle Scholar
  70. Laughlin, G. A. (1999). The role of nutrition in the etiology of functional hypothalamic amenorrhea. Curr. Opin. Endocrinol. Diabetes, 6, 38–43.CrossRefGoogle Scholar
  71. Laughlin, G. A. and Yen, S. S. C. (1997). Hypoleptinemia in women athletes: absence of a diurnal rhythm with amenorrhea. J. Clin. Endocrinol. Metab., 82, 318–321.PubMedCrossRefGoogle Scholar
  72. Laughlin, G. A., Dominguez, C. E., and Yen, S. S. C. (1998). Nutritional and endocrine-metabolic aberrations in women with functional hypothalamic amenorrhea. J. Clin. Endcrinol. Metab., 83, 25–32.CrossRefGoogle Scholar
  73. Legradi, G., Emerson, C. H., Ahima, R. S., Flier, J. S., and Lechan, R. M. (1997). Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology, 138, 2569–2576.PubMedCrossRefGoogle Scholar
  74. Legradi, G., Emerson, C. H., Ahima, R. S., Rand, W. M., Flier, J. S., and Lechan, R. M. (1998). Arcuate nucleus ablation prevents fasting-induced suppression of proTRH mRNA in the hypothalamic paraventricular nucleus. Neuroendocrinology, 68, 89–97.PubMedCrossRefGoogle Scholar
  75. Leibel, R. L., Rosenbaum, M., and Hirsch, J. (1995). Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med., 332, 621–628.PubMedCrossRefGoogle Scholar
  76. Lindberg, J. S., Fears, W. B., Hunt, M. M., Powell, M. R., Boll, D., and Wade, C. E. (1984). Exercise-induced amenorrhea and bone density. Ann. Intern. Med., 101, 647–648.PubMedGoogle Scholar
  77. Lindsay, R., Cosman, F., Herrington, B. S., and Himmelstein, S. (1992). Bone mass and body composition in normal women. J. Bone Miner. Res., 7, 55–63.PubMedCrossRefGoogle Scholar
  78. Liu, C, Grossman, A., Bain, S., Strchan, M., Puermner, D., Bailey, C, Humes, J., Lenox, J., Yamamoto, G., Sprugel, K., Kuijper, J., Weigle, S., Dumam, D., and Moore, E. (1997). Leptin stimulates cortical bone formation in obese (ob/ob) mice. J. Bone. Miner. Res., 12, S115.CrossRefGoogle Scholar
  79. Liu, J. H. (1998). Anovulation of CNS Origin. In B. R. Carr and R. E. Blackwell (Eds.). Textbook of Reproductive Medicine, Appleton and Lange, Stamford, CT, pp. 309–322.Google Scholar
  80. Lloyd, S. J., Triantafyllou, S. J., Baker, E. R., Houts, P. S., Whiteside, J. A., Kalenak, A., and Stumpf, P. (1986). Women athletes with menstrual irregularity have increased musculoskeletal injuries. Med. Sci. Sports Exert., 18(4), 374–379.Google Scholar
  81. Locke, R. J. and Warren, M. P. (2000). How to prevent bone loss in women with hypothalamic amenorrhea. Womens Health Primary Care, 3, 210–21S.Google Scholar
  82. Loucks, A. B. and Heath, E. M. (1994). Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am. J. Physiol., 266, R817–R823.PubMedGoogle Scholar
  83. Loucks, A. B., Brown, R., King, K., Thuma, J. R., and Verdun, M. (1995). A combined regimen of moderate dietary restriction and exercise training alters luteinizing hormone pulsatility in regularly menstruating young women. Endocrine Society Annual Meeting, Washington DC (June 14–17), Abstract, 558–558.Google Scholar
  84. Loucks, A. B., Mortola, J. F., Girton, L., and Yen, S. S. C. (1989). Alterations in the hypothalamic-pituitaryovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J. Clin. Endocrinol. Metab., 68, 402–411.PubMedCrossRefGoogle Scholar
  85. Macut, D., Micic, D., Pralong, F. P., Bischof, P., and Campana, A. (1998). Is there a role for leptin in human reproduction? Gynecol. Endocrinol., 12, 321–326.PubMedCrossRefGoogle Scholar
  86. Maffei, M., Halaas, J., Ravussin, E., Pratley, R. E., Lee, G. H., Zhang, Y., Fei, H., Kim, S., Lallone, R., and Ranganathan, S. (1995). Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med., 1, 1155–1161.PubMedCrossRefGoogle Scholar
  87. Manolagas, S. C., and Jilka, R. L. (1995). Bone marrow, cytokines, and bone remodeling: Emerging insights into the pathophysiology of osteoporosis. N. Eng. J. Med., 332(5):305–311.CrossRefGoogle Scholar
  88. Marcus, R., Cann, C. E., Madvig, P., Minkoff, J., Goddard, M., Bayer, M., Martin, M. C., Gaudiani, L., Haskell, W., and Genant, H. K. (1985). Menstrual function and bone mass in elite women distance runners. Ann. Intern. Med., 102, 158–163.PubMedGoogle Scholar
  89. Masuda, A., Shibasaki, T., Hotta, M., Yamauchi, N., Ling, N., Demura, H., and Shizume, K. (1990). Insulininduced hypoglycemia, L-dopa and arginine stimulate GH secretion through different mechanisms in man. Regul. Pept., 31, 53–64.PubMedCrossRefGoogle Scholar
  90. Mecklenburg, R. S., Loriaux, D. L., and Thompson, R. H. (1974). Hypothalamic dysfunction in patients with anorexia nervosa. Medicine, 53, 147.PubMedCrossRefGoogle Scholar
  91. Miller, K. K. and Klibanski, A. (1999). Amenorrheic bone loss. J. Clin. Endocrinol. Metab., 84, 1775–1783.PubMedCrossRefGoogle Scholar
  92. Miller, K. K., Parulekar, M. S., Schoenfeld, E., Anderson, E., Hubbard, J., Klibanski, A., and Grinspoon, S. K. (1998). Decreased leptin levels in normal weight women with hypothalamic amenorrhea: the effects of body composition and nutritional insults. J. Clin. Endocrinol. Metab., 83, 2309–2312.PubMedCrossRefGoogle Scholar
  93. Moshang, T., Jr. and Utiger, R. D. (1977). Low triiodothyronine euthyroidism in anorexia nervosa. In R. Vigersky (Ed.) Anorexia Nervosa. New York: Raven Press, p. 263.Google Scholar
  94. Moshang, T., Jr., Parks, J. S., Baker, L., Vaidya, V., Utiger, R. D., Bongiovanni, A. M., and Snyder, P. J. (1975). Low serum triiodothyronine in patients with anorexia nervosa. J. Clin. Endocrinol. Metab., 40, 470–473.PubMedCrossRefGoogle Scholar
  95. Myerson, M., Gutin, B., Warren, M. P., May, M., Contento, I., Lee, M., Pierson, R. N., and Pi-Sunyer, F. X. (1987). Energy balance of amenorrhea and eumenorrheic runners. Med. Sci. Sports. Exert., Abstract, 19, S37.CrossRefGoogle Scholar
  96. Myerson, M., Gutin, B., Warren, M. P., May, M., Contento, I., Lee, M., Pi-Sunyer, F. X., Pierson, R. N., and Brooks-Gunn, J. (1991). Resting metabolic rate and energy balance in amenorrheic and eumenorrheic runners. Med. Sci. Sports. Exerc., 23(1), 15–22.PubMedGoogle Scholar
  97. Nappi, R. E., Petraglia, F., Genazzani, A. D., D’Ambrogio, G., Zara, C., and Genazzani, A. R. (1993). Hypothalamic amenorrhea: evidence for a central derangement of hypothalamic-pituitary-adrenal cortex axis activity. Fertil. Steril., 59, 571–576.PubMedGoogle Scholar
  98. Newman, M. M. and Halmi, K. A. (1988). The endocrinology of anorexia nervosa and bulimia nervosa. Neurol. Clin., 6, 195–212.PubMedGoogle Scholar
  99. Newman, M. M., Halmi, K. A., and Marchi, P. (1987). Relationship of clinical factors to caloric requirements in subtypes of eating disorders. Biol. Psychiatry., 22, 1253–1263.PubMedCrossRefGoogle Scholar
  100. Ogueh, O., Sooranna, S., Nicolaides, K. H., and Johnson, M. R. (2000). The relationship between leptin concentration and bone metabolism in the human fetus. J. Clin. Endocrinol. Metab., 85, 1997–1999.PubMedCrossRefGoogle Scholar
  101. Okano, H., Mizunuma, H., Soda, M. Matsui, H., Honjo, S., and Ibuki, Y. (1995). Effects of exercise and amenorrhea on bone mineral density in teenage runners. Endocrine Journal, 42, 271–276.PubMedCrossRefGoogle Scholar
  102. Olson, B. R., Cartledge, T., Sebring, N., Defensor, R., and Nieman, L. (1995). Short-term fasting affects luteinizing hormone secretory dynamics but not reproductive function in normal-weight sedentary women. J. Clin. Endocrinol. Metab, 80, 1187–1193.PubMedCrossRefGoogle Scholar
  103. Ott, S. M. (1990). Editorial: attainment of peak bone mass. J. Clin. Endocrinol. Metab., 71, 1082A–1082C.PubMedCrossRefGoogle Scholar
  104. Pettersson, F., Fries, H., and Nillius, S. J. (1973). Epidemiology of secondary amenorrhea: incidence and prevalence rates. Am. J. Obstet. Gynecol., 7, 80–86.Google Scholar
  105. Pettersson, U., Stalnacke, B., Ahlenius, G., Henriksson-Larsen, K., and Lorentzon, R. (1999). Low bone mass density at multiple skeletal sites, including the appendicular skeleton in amenorrheic runners. Calcif. Tissue Int., 64, 117–125.PubMedCrossRefGoogle Scholar
  106. Pirke, K. M., Pahl, J., Schweiger, U., and Warnhoff, M. (1985). Metabolic and endocrine indices of starvation in bulimia: a comparison with anorexia nervosa. Psychiatry. Res., 15, 33–39.PubMedCrossRefGoogle Scholar
  107. Platte, P., Pirke, K. M., Trimborn, P., Pietsch, K., Krieg, J. C., and Fichter, M. M. (1994). Resting metabolic rate and total energy expenditure in acute and weight recovered patients with anorexia nervosa and in healthy young women. Int. J. Eating. Disord., 16, 45–52.CrossRefGoogle Scholar
  108. Ponzo, O. J., Szwarcfarb, B., Rondina, D., Carbone, S., Reynoso, R., Scacchi, P., and Moguilevsky, J. A. (2001). Changes in the sensitivity of gonadotrophin axis to leptin during sexual maturation in female rats. Neuroendocrinol. Lett., 22, 427–431.PubMedGoogle Scholar
  109. Powers, P. S. (1999). Osteoporosis and eating disorders. J. Pediatr. Adolesc. Gynecol., 12, 51–57.PubMedCrossRefGoogle Scholar
  110. Prior, J. C. and Vigna, Y. M. (1985). Gonadal steroids in athletic women: contraception, complications and performance. Sports Med., 2, 287–295.PubMedCrossRefGoogle Scholar
  111. Prior, J. C, Vigna, Y. M., Schechter, M. T., and Burgess, A. E. (1990). Spinal bone loss and ovulatory disturbances. N. Engl. J. Med., 323, 1221–1227.PubMedCrossRefGoogle Scholar
  112. Rauch, F., Blum, W. F., Klein, K., Allolio, B., and Schonau, E. (1998). Does leptin have an effect on bone in adult women? Calcif. Tissue Int., 63, 453–455.PubMedCrossRefGoogle Scholar
  113. Reseland, J. E., Syversen, U., Bakke, I., Qvigstad, G., Eide, L. G., Hjertner, O., Gordeladze, J. O., and Drevon, C. A. (2001). Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J. Bone Miner. Res., 16, 1426–1433.PubMedCrossRefGoogle Scholar
  114. Riggs, B. L. and Eastell, R. (1986). Exercise, hypogonadism and osteopenia. JAMA, 256, 392–393.PubMedCrossRefGoogle Scholar
  115. Rigotti, N. A., Neer, R. M., Skates, S. J., Herzog, D. B., and Nussbaum, S. R. (1991). The clinical course of osteoporosis in anorexia nervosa: a longitudinal study of cortical bone mass. JAMA, 265, 1133–1138.PubMedCrossRefGoogle Scholar
  116. Rigotti, N. A., Nussbaum, S. R., Herzog, D. B., and Neer, R. M. (1984). Osteoporosis in women with anorexia nervosa. N. Engl. J. Med, 311, 1601–1606.PubMedCrossRefGoogle Scholar
  117. Robinson, E., Bachrach, L. K., and Katzman, D. K. (2000). Use of hormone replacement therapy to reduce the risk of osteopenia in adolescent girls with anorexia nervosa. J. Adolesc. Health, 26, 343–348.PubMedCrossRefGoogle Scholar
  118. Roth, J. C., Kelch, R. P., Kaplan, S. L., and Grumbach, M. M. (1972). FSH and LH response to luteinizing hormone-releasing factor in prepubertal and pubertal children, adult males and patients with hypogonadotropic and hypergonadotropic hypogonadism. J. Clin. Endocrinol. Metab., 35, 926–930.PubMedCrossRefGoogle Scholar
  119. Rutherford, O. M. (1993). Spine and total body bone mineral density in amenorrheic endurance athletes. J. Appl. Physiol., 74, 2904–2908.PubMedGoogle Scholar
  120. Sakala, E. P. (1997). Obstetrics & Gynecology. Williams & Wilkins, Baltimore, 266–272.Google Scholar
  121. Salisbury, J. J. and Mitchell, J. E. (1991). Bone mineral density and anorexia nervosa in women. Am. J. Psychiatry, 148, 768–774.PubMedGoogle Scholar
  122. Salisbury, J. J., Levine, A. S., Crow, S. J., and Mitchell, J. E. (1995). Refeeding, metabolic rate, and weight gain in anorexia nervosa: a review. Int. J. Eating Disord., 17, 337–345.CrossRefGoogle Scholar
  123. Sanborn, C. F., Martin, B. J., and Wagner, W. W., Jr. (1982) Is athletic amenorrhea specific to runners? Am. J. Obstet. Gynecol., 143, 859–861.PubMedGoogle Scholar
  124. Schreihofer, D. A., Amico, J. A., and Cameron, J. L. (1993). Reversal of fasting-induced suppression of luteinizing hormone (LH) secretion in male rhesus monkeys by intragastric nutrient infusion: evidence for rapid stimulation of LH by nutritional signals. Endocrinology, 132, 1890–1897.PubMedCrossRefGoogle Scholar
  125. Schweiger, U. (1991). Menstrual function and luteal-phase deficiency in relation to weight changes and dieting. Clin. Obstet. Gynecol., 34(1), 191–197.PubMedCrossRefGoogle Scholar
  126. Shangold, M. M., and Levine, H. S. The effect of marathon training upon menstrual function. Am. J. Obstet. Gynecol., 143, 862–869.Google Scholar
  127. Singh, K. B. (1981). Menstrual disorders in college students. Am. J. Obstet. Gynecol., 1210, 299–302.Google Scholar
  128. Smith, E. L. and Gilligan, C. (1994). Bone Concerns. In M. M. Shangold and G. Mirkin (Eds.). Women and Exercise: Physiology and Sports Medicine, F. A. Davis Company, Philadelphia, pp. 89–101.Google Scholar
  129. Soules, M. R., Steiner, R. A., Clifton, D. K., and Bremner, W. J. (1984). Abnormal patterns of pulsatile luteinizing hormone in women with luteal phase deficiency. Obstet. Gynecol., 63, 626–629.PubMedGoogle Scholar
  130. Soyka, L. A., Grinspoon, S., Levitsky, L. L., Herzog, D. B., and Klibanski, A. (1999). The effects of anorexia nervosa on bone metabolism in female adolescents. J. Clin. Endcrinol. Metab., Abstract, 84(12), 4489–4496.CrossRefGoogle Scholar
  131. Steen, S. N., Oppliger, R. A., and Brownell, K. D. (1988). Metabolic effects of repeated weight loss and regain in adolescent wrestlers. JAMA, 260, 47–50.PubMedCrossRefGoogle Scholar
  132. Steppan, C. M., Crawford, D. T., Chidsey-Frink, K. L., Ke, H., and Swick, A. G. (2000). Leptin is a potent stimulator of bone growth in ob/ob mice. Regul. Pept., 92, 73–78.PubMedCrossRefGoogle Scholar
  133. Steppan, C. M., Chidsey-Frink, K. L., Crawford, D. T., et al. (1998). Leptin administration causes bone growth in ob/ob mice. The Endocrine Society, 80th Annual Meeting, New Orleans, LA, Abstract.Google Scholar
  134. Tezuka, M., Irahara, M., Ogura, K., Kiyokawa, M., Tamura, T., Matsuzaki, T., Yasui, T., and Aono, T. (2002). Effects of leptin on gonadotropin secretion in juvenile female rat pituitary cells. Eur. J. Endocrinol., 146, 261–266.PubMedCrossRefGoogle Scholar
  135. Thomas, T., Gori, F., Burguera, B., et al. (1998). Leptin acts on human marrow stromal precursor cells to enhance osteoblast differentiation and to inhibit adipocyte differentiation: a potential mechanism for increased bone mass in obesity. The Endocrine Society, 80th Annual Meeting, New Orleans, LA, Abstract.Google Scholar
  136. Thong, F. S., McLean, C., and Graham, T. E. (2000). Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors. J. Appl. Physiol., 88, 2037–2044.PubMedGoogle Scholar
  137. Tsafriri, A., Dekel, N., and Bar-Ami, S. (1982). The role of oocyte maturation inhibitor in follicular regulation of oocyte maturation. J. Reprod. Eertil., 64, 541–551.CrossRefGoogle Scholar
  138. Tuschl, R. J., Platte, P., Laessle, R. G., Stichler, W., and Pirke, K. M. (1990). Energy expenditure and every day eating behavior in healthy young women. Am. J. Clin. Nutr., 52, 81–86.PubMedGoogle Scholar
  139. van Binsbergen, C. J. M., Coelingh Bennink, H. J. T., Odink, J., Haspels. A. A., and Koppeschaar. H. P. F. (1990). A comparative and longitudinal study on endocrine changes related to ovarian function in patients with anorexia nervosa. J. Clin. Endocrinol. Metab., 71, 705–711.PubMedCrossRefGoogle Scholar
  140. Vigersky, R. A., Andersen, A. E., Thompson, R. H., and Loriaux, D. L. (1977). Hypothalamic dysfunction in secondary amenorrhea associated with simple weight loss. N. Engl. J. Med., 297, 1141–1145.PubMedCrossRefGoogle Scholar
  141. Walsh, B. T., Katz, J. L., Levin, J., Kream, J., Fukushima, D. K., Hellman, L. D., Weiner, H., and Zumoff, B. (1978). Adrenal activity in anorexia nervosa. Psychosom. Med., 40, 499–506.PubMedGoogle Scholar
  142. Warren, M. P. (1980). The effects of exercise on pubertal progression and reproductive function in girls. J. Clin. Endocrinol. Metab., 57(5), 1150–1157.CrossRefGoogle Scholar
  143. Warren, M. P. (1983). The effects of undernutrition on reproductive function in the human. Endocr. Rev., 4, 363–377.PubMedCrossRefGoogle Scholar
  144. Warren, M. P. (1999). Health issues for women athletes: exercise-induced amenorrhea [see comments]. J. Clin. Endocrinol. Metab., 84, 1,892–1,896.CrossRefGoogle Scholar
  145. Warren, M. P. and Shangold, M. M. (1997). Sports Gynecology: Problems and Care of the Athletic Female. Blackwell Science, Cambridge, MA.Google Scholar
  146. Warren, M. P. and Vande Wiele, R. L. (1973). Clinical and metabolic features of anorexia nervosa. Am. J. Obstet. Gynecol., 777(3), 435–449.Google Scholar
  147. Warren, M. P., Fox, R. P., DeRogatis, A. J., and Hamilton, W. G. (1994a). Osteopenia in hypothalamic amenorrhea: a 3-year longitudinal study. The Endocrine Society Annual Meeting, Anaheim, California, Abstract.Google Scholar
  148. Warren, M. P., Brooks-Gunn, J., Hamilton, L. H., Warren, L. F., and Hamilton, W. G. (1986). Scoliosis and fractures in young ballet dancers: relation to delayed menarche and secondary amenorrhea. N. Engl. J. Med., 314, 1348–1353.PubMedCrossRefGoogle Scholar
  149. Warren, M. P., Jewelewicz, R., Dyrenfurth, I., Ans, R., Khalaf, S., and Vande Wiele, R. L. (1975). The significance of weight loss in the evaluation of pituitary response to LH-RH in women with secondary amenorrhea. J. Clin. Endocrinol. Metab., 40, 601–611.PubMedCrossRefGoogle Scholar
  150. Warren, M. P., Brooks-Gunn, J., Fox, R. P., Lancelot, C, Newman, D., and Hamilton, W. G. (1991). Lack of bone accretion and amenorrhea: evidence for a relative osteopenia in weight bearing bones. J. Clin. Endocrinol. Metab., 72, 847–853.PubMedCrossRefGoogle Scholar
  151. Warren, M. P., Holderness, C. C., Lesobre, V., Tzen, R., Vossoughian, F., and Brooks-Gunn, J. (1994b). Hypothalamic amenorrhea and hidden nutritional insults. J. Soc. Gynecol. Invest., 1, 84–88.Google Scholar
  152. Warren, M. P., Voussoughian, F., Geer, E. B., Hyle, E. P., Adberg, C. L., and Ramos, R. H. (1999). Functional hypothalamic amenorrhea: hypoleptinemia and disordered eating. J. Clin. Endocrinol. Metab., 84, 873–877.PubMedCrossRefGoogle Scholar
  153. Warren, M. P., Brooks-Gunn, J., Fox, R. P., Holderness, C. C., Hyle, E. P., and Hamilton, W. G. (2002). Osteopenia in exercise associated amenorrhea using ballet dancers as a model: a longitudinal study. J. Clin. Endocrinol. Metab., 87(1): 3162–3168.PubMedCrossRefGoogle Scholar
  154. Williams, N. I., Helmreich, D. L., Parfitt, D. B., Caston-Balderrama, A., and Cameron, J. L. (2001). Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J. Clin. Endocrinol. Metab., 86, 5184–5193.PubMedCrossRefGoogle Scholar
  155. Wilson, G. T. and Walsh, B. T. (1991). Eating disorders in the DSM-IV. J. Abnorm. Psychol., 100(3), 362–365.PubMedCrossRefGoogle Scholar
  156. Wolman, R. L., Clark, P., McNally, E., Harries, M., and Reeve, J. (1990). Menstrual state and exercise as determinants of spinal trabecular bone density in female athletes. Brit. Med. J., 301, 516–518.PubMedCrossRefGoogle Scholar
  157. Yamauchi, M., Sugimoto, T., Yamaguchi, T., Nakaoka, D., Kanzawa, M., Yano, S., Ozuru, R., Sugishita, T., and Chihara, K. (2001). Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin. Endocrinol. (Oxf), 55, 341–347.CrossRefGoogle Scholar
  158. Zanker, C. L. (1999). Bone metabolism in exercise associated amenorrhoea: the importance of nutrition. Br. J. Sports Med., 33, 228–229.PubMedCrossRefGoogle Scholar
  159. Zanker, C. L. and Swaine, I. L. (1998a). Bone turnover in amenorrhoeic and eumenorrhoeic distance runners. Scand. J. Med. Sci. Sports, 8, 20–26.PubMedCrossRefGoogle Scholar
  160. Zanker, C. L. and Swaine, I. L. (1998b). The relationship between bone turnover, oestradiol, and energy balance in women distance runners. Br. J. Sports Med., 32, 167–171.PubMedCrossRefGoogle Scholar
  161. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Michelle P. Warren
    • 1
  • Jennifer E. Dominguez
    • 1
  1. 1.Departments of Medicine and Obstetrics and GynecologyColumbia UniversityUSA

Personalised recommendations