Strategies Leading To MT2 Selective Melatonin Receptor Antagonists

  • Gilberto Spadoni
  • Annalida Bedini
  • Giovanni Piersanti
  • Marco Mor
  • Silvia Rivara
  • Giorgio Tarzia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 527)

Abstract

Studies of the physiological actions of melatonin have been hindered by the lack of specific, potent and subtype selective agonists and antagonists. This paper reviews our progress in developing subtype selective melatonin antagonists. Evidence is presented suggesting the structural features conferring MT2 selective antagonism.

Keywords

Amide Retina Melatonin Indole Benzyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Vanecek Cellular mechanisms of melatonin action, Physiol. Rev. 78, 687–721 (1998).PubMedGoogle Scholar
  2. 2.
    P. D. Penev; P. C. Zee. Melatonin: a clinical perspective, Ann. Neurol. 42, 545–553 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    S. M. Reppert; D. R. Weaver; C. Godson. Melatonin receptors step into the light: cloning and classifications of subtypes, Trends Pharmacol. Sci. 17, 100–102 (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    M. L. Dubocovich; D. P. Cardinali; P. Delagrange; D. N. Krause; A. D. Strosberg; D. Sugden; F. D. Yocca. The IUPHAR Compendium of Receptor Characterization and Classification, IUPHAR Media, London; (2000), 271–277.Google Scholar
  5. 5.
    P. J. Morgan; P. Barrett; H. E. Howell; R. Helliwell. Melatonin receptors: localization, molecular pharmacology and physiological significance, Neurochem. Int. 24, 101–146 (1994).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Delagrange; B. Guardiola-Lemaitre. Melatonin, its receptors and relationships with biological rhythms disorders, Clin. Neuropharmacol., 20, 482–510 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Doolen; D. N. Krause; M. L. Dubocovich; S. P. Duckles. Melatonin mediates two distinct responses in vascular smooth muscle, Eur. J. Pharmacol. 345, 67–69 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    V. Motilva; J. Cabeza; C. Alarc¨®n de la Lastra. New issues about melatonin and its effects on the digestive System, Curr. Pharm. Design. 7, 909–931 (2001).CrossRefGoogle Scholar
  9. 9.
    M. Mor; P. V. Plazzi; G. Spadoni, G. Tarzia. Melatonin, Curr. Med. Chem. 6, 501–518 (1999). 10 M. L. Dubocovich. Luzindole (N-0774): a novel melatonin receptor antagonist, J. Pharmacol. Exp. Ther., 246, 902–910 (1988).Google Scholar
  10. 11.
    B. Guardiola-Lemaitre; P. Delagrange. Melatonin analogs: from pharmacology to clinical application, Eur. J. Med. Chem. 30, 643s-651s (1995).Google Scholar
  11. 12.
    M. L. Dubocovich, Melatonin receptors: are there multiple subtypes?, Trends Pharmacol. Sci. 16, 50–56 (1995).PubMedCrossRefGoogle Scholar
  12. 13.
    D. J. Davies; P. J. Garratt; D. A. Tocher; S. Vonhoft, J. Davies; M.-T. Teh; D. Sugden. Mapping the melatonin receptor. 5. Melatonin agonists and antagonists derived from tetrahydrocyclopent[b]indoles, tetrahydrocarbazoles and hexahydrocyclohept[b]indoles, J. Med. Chem. 41, 451–467 (1998).PubMedCrossRefGoogle Scholar
  13. 14.
    D. Sugden; L. K. Yeh; M.-T Teh. Design of subtype selective melatonin receptor agonists and antagonists. Reprod. Nutr. Dev. 39, 335–344 (1999).CrossRefGoogle Scholar
  14. 15.
    P. J. Garratt; R. Jones; D. A. Tocher; D. Sugden. Mapping the melatonin receptor. 3. Design and synthesis of melatonin agonists and antagonists derived from 2-phenyltryptamines, J. Med. Chem., 38, 1132–1139 (1995).Google Scholar
  15. 16.
    M. L. Dubocovich; M. I. Masana; S. lacob; D. M. Sauri. Melatonin receptor antagonists that differentiate between the human Mel„ and Mel,b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina MI, presynaptic heteroreceptor, Naunyn-Schmiedeberg’s Arch. Pharmacol. 355, 365375 (1997).Google Scholar
  16. 17.
    G. Spadoni; C. Balsamini; A. Bedini; A. Carey; G. Diamantini; B. Di Giacomo; A. Tontini; G. Tarzia; R. Nonno; V. Lucini; M. Pannacci; B. M. Stankov; F. Fraschini. N-Acyl-5- and -2,5-substituted tryptamines: synthesis, activity and affinity for human mt, and MT2 melatonin receptors, Med. Chem. Res. 8, 487–498 (1998).Google Scholar
  17. 18.
    R. Nonno; V. Lucini; G. Spadoni; M. Pannacci; A. Croce; D. Esposti; C. Balsamini; G. Tarzia; F. Fraschini; B. M. Stankov. A new melatonin receptor ligand with mt1-agonist and MT2-antagonist properties, J. Pineal Res., 29, 234–240, (2000).PubMedCrossRefGoogle Scholar
  18. 19.
    G. Spadoni; C. Balsamini; A. Bedini; G. Diamantini; B. Di Giacomo; A. Tontini; G. Tarzia; M. Mor; P. V. Plazzi; S. Rivara; R. Nonno; M. Pannacci; V. Lucini; F. Fraschini; B. M. Stankov. 2-[N-Acylamino(C,Ct)alkyl]indoles as MTI melatonin receptor partial agonists, antagonists, and putative inverse agonists. J. Med. Chem., 41, 3624–3634 (1998).PubMedCrossRefGoogle Scholar
  19. 20.
    G. Spadoni; C. Balsamini; G. Diamantini; A. Tontini; G. Tarzia; M. Mor; S. Rivara; P. V. Plazzi; R. Nonno; V. Lucini; M. Pannacci; F. Fraschini; B. M. Stankov. 2-N-acylaminoalkylindoles: design and quantitative structure-activity relationship studies leading to MT2-selective melatonin antagonists. J. Med. Chem., 44, 2900–2912 (2001).PubMedCrossRefGoogle Scholar
  20. 21.
    S. Rivara; M. Mor; G. Spadoni; G. Tarzia; F. Vacondio; V. Lucini; P. V. Plazzi. QSAR and 3D-QSAR characterization of MT2 selective melatonin receptor antagonists. Hungarian-German-Italian-Polish Joint Meeting on Medicinal Chemistry, Budapest, 2–6 september 2001, p.26.Google Scholar
  21. 22.
    R. Nonno; M. Pannacci; V. Lucini; D. Angeloni; F. Fraschini; B. M. Stankov. Ligand efficacy and potency at recombinant human MT2 melatonin receptors: evidence for agonist activity of some mt1-antagonists. Br. J. Pharmacol. 127, 1288–1294 (1999).PubMedCrossRefGoogle Scholar
  22. 23.
    R. Nonno; V. Lucini; M. Pannacci; C. Mazzucchelli; D. Angeloni; F. Fraschini; B. M. Stankov. Pharmacological characterization of the human melatonin Mella receptor following stable transfection into NIH3T3 cells. Br. J. Pharmacol. 124, 485–492 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Gilberto Spadoni
    • 1
  • Annalida Bedini
    • 1
  • Giovanni Piersanti
    • 1
  • Marco Mor
    • 2
  • Silvia Rivara
    • 2
  • Giorgio Tarzia
    • 1
  1. 1.Istituto di Chimica Farmaceutica e TossicologicaUniversità degli Studi di UrbinoUrbinoItaly
  2. 2.Dipartimento FarmaceuticoUniversità degli Studi di ParmaParmaItaly

Personalised recommendations