Advertisement

Tryptophan Metabolism Along the Kynurenine Pathway in Rats

  • Graziella Allegri
  • Eugenio Ragazzi
  • Antonella Bertazzo
  • Carlo V. L. Costa
  • Raniero Rocchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 527)

Abstract

Enzyme activities along the kynurenine pathway, liver tryptophan 2,3-dioxygenase, small intestine indole 2,3-dioxygenase, liver and kidney kynurenine 3-monooxygenase, kynureninase, kynurenine-oxoglutarate transaminase, 3-hydroxyanthranilate 3,4dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase, involved in the catabolism of tryptophan, were studied in male adult Wistar albino rats. Intestine superoxide dismutase and serum tryptophan were also determined. Hepatic tryptophan 2,3-dioxygenase is present both as holoenzyme and apoenzyme, but the total activity is inferior to that of intestine indole 2,3-dioxygenase which, therefore, actively oxidizes tryptophan in rats. However, this activity is inhibited by scavengers for the superoxide anion, such as superoxide dismutase, which also shows to be active in small intestine of rat. However, the more active enzymes appeared to be kynurenine 3-monooxygenase and 3-hydroxyanthranilate 3,4-dioxygenase. The former is equally active in both liver and kidney, the latter is more active in liver. Kynurenine-oxoglutarate transaminase is much more active in kidney than in liver, and much more active than kynureninase, which shows similar activities in both tissues.

In contrast to the high activity of 3-hydroxyanthranilate 3,4-dioxygenase, aminocarboxymuconate-semialdehyde decarboxylase is 30-35 times less active, showing the efficiency of conversion of tryptophan to NAD. These data demonstrate that rat is a useful animal model for studying tryptophan metabolism along the kynurenine pathway.

Serum tryptophan appeared to be 90% bound to proteins. Results demonstrate that, in rat, tryptophan is mainly metabolised along the kynurenine pathway. Therefore, rat is a suitable animal model for studying tryptophan metabolism in the pathological field.

Keywords

Fresh Tissue Quinolinic Acid Anthranilic Acid Kynurenic Acid Kynurenine Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Musajo and C.A. Benassi, Aspects of disorders of the kynurenine pathway of tryptophan metabolism in manAdv. Clin. Chem. 763–135 (1964).PubMedCrossRefGoogle Scholar
  2. 2.
    J.M. Price, R.R Brown, N. Yess, Testing the functional capacity of the tryptophan-niacin pathway in man by analysis of urinary metabolitesAdv. Metab. Disorders 2159–225 (1965).Google Scholar
  3. 3.
    H. Wolf, Studies on tryptophan metabolism in manScand. J. Clin. Lab. Invest.Suppl. No1361–186 (1974).PubMedGoogle Scholar
  4. 4.
    J.C. Peters, Tryptophan nutrition and metabolism: an overview, in:Kynurenine and Serotonin Pathwaysedited by R. Schwarcz et al. (Plenum Press, New York, 1991), pp. 345–358.CrossRefGoogle Scholar
  5. 5.
    D.A. Bender and G.M. McCreanor, The preferred route of kynurenine metabolism in therat Biochim. Biophys. Acta717, 56–60 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Schwarcz, F. Du, W. Schmidt, W.A. Turski, J.B. Gramsbergen, E. Okuno, R.C. Roberts, Kynurenic acid: a potential pathogen in brain disordersAnn. N.Y. Acad. Sci. 648140–153 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Schwarcz, Metabolism and function of brain kynureninesBiochem. Soc. Trans. 2177–82 (1993).PubMedGoogle Scholar
  8. 8.
    F. Moroni, P. Russi, M.A. Gallo-Mezo, G. Moneti, R. Pellicciari, Modulation of quinolinic and kynurenic acid content in the rat brain: effects of endotoxine and nicotinylalanineJ. Neurochem. 571630–1635 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    M.P. Heyes, K. Saito, D. Jacobowitz, S.P. Markey, O. Takikawa, J.H. Vickers, Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brainFASEB J. 62977–2989 (1992).PubMedGoogle Scholar
  10. 10.
    K. Saito, J.S. Crowley, S.P. Markey, M.P. Heyes, A mechanism for increased quinolinic acid formation following acute systemic immune stimulationJ. Biol. Chem. 25815496–15503 (1993).Google Scholar
  11. 11.
    M.P. Heyes, K. Saito, J.S. Crowley, L.E. Davis, M.A. Demitrack et al, Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological diseaseBrain 1151249–1273 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    W.E. Knox and A.H. Mehler, The conversion of tryptophan to kynurenine in liver I. The coupled tryptophan peroxidase-oxidase system forming formylkynurenineJ. Biol. Chem. 187419–438 (1950).PubMedGoogle Scholar
  13. 13.
    A.H. Mehler and W.E. Knox, The conversion of tryptophan to kynurenine in the liver.11. The enzymatic hydrolysis of formylkynurenineJ. Biol. Chem. 187431–438 (1950).PubMedGoogle Scholar
  14. 14.
    C.E. Dalgliesh and H. Tabechian, Comparison of the metabolism of uniformily14C-labelled Lphenylalanine, L-tyrosin and L-tryptophan in therat Biochem. J. 62625–633 (1956).PubMedGoogle Scholar
  15. 15.
    N. Canal, and A.M. Faccioli, Distribuzione della triptofano-perossidasi-ossidasi (TPO) in alcune specie animaliBo!!. Soc. Ital. Biol. Sper. 35305–308 (1959).Google Scholar
  16. 16.
    K. Altman and O. Greengard, Correlation of kynurenine excretion with liver tryptophan pynrolase levels in disease and after hydrocortisone inductionJ. Clin. Invest. 451527–1534 (1966).PubMedCrossRefGoogle Scholar
  17. 17.
    W.E. Knox and A.H. Mehler, The adaptive increase of the tryptophan peroxidase-oxidase system of liverScience 113237–238 (1951).PubMedCrossRefGoogle Scholar
  18. 18.
    W.E. Knox and V.H. Auerback, The hormonal control of tryptophan peroxidase in the ratJ. Biol. Chem. 214307–313 (1955).PubMedGoogle Scholar
  19. 19.
    W.E. Knox, The regulation of tryptophan pyrrolase activity by tryptophanAdv. Enzyme Regul. 4287–297 (1966).PubMedCrossRefGoogle Scholar
  20. 20.
    R.T. Schimke, E.W. Sweeney, and C.M. Berlin, The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolaseJ. Biol. Chem. 240322–331 (1965).PubMedGoogle Scholar
  21. 21.
    R.T. Schimke, On the roles of synthesis and degradation in regulation of enzyme levels in mammalian tissuesCurr. Top. Cell Regul. 177–124 (1969).Google Scholar
  22. 22.
    A.A-B Badawy and M. EvansTheeffects of chemical porphyrogens and drugsonthe activityofrat liver tryptophan pyrrolaseBiochem. J. 136885–892 (1973).PubMedGoogle Scholar
  23. 23.
    A.A-B. Badawy and M. Evans, The regulation of rat liver tryptophan pyrrolase by its cofactor haemexperiments with haematin and 5-aminolaevulinate and comparison with the substrate and hormonal mechanismsBiochem. J. 150511–520 (1975).PubMedGoogle Scholar
  24. 24.
    P. Feigelson and O. Greengard, A microsomal iron-porphyrin activator of rat liver tryptophan pyrrolaseJ. Biol. Chem. 236153–157 (1961).PubMedGoogle Scholar
  25. 25.
    Y. Watanabe, M. Fujiwara, R. Yoshida, O. Hayaishi, Stereospecificity of hepatic L-tryptophan 2,3dioxygenaseBiochem. J. 189393–405 (1980).PubMedGoogle Scholar
  26. 26.
    A. A-B. Badawy and M. Evans, Animal liver tryptophan pyrrolases. Absence of apoenzyme and of hormonal induction mechanism from species sensitive to tryptophan toxicityBiochem. J. 15879–88 (1976).PubMedGoogle Scholar
  27. 27.
    J.E. Leklem, J. Woodford and R.R. Brown, Comparative tryptophan metabolism in cats and ratsComp. Biochem. Physiol. 3195–109 (1969).PubMedCrossRefGoogle Scholar
  28. 28.
    F.T. De Castro, R.R Brown, and J.M. Price, The intermediary metabolism of tryptophan by cat and rat tissue preparationsJ. Biot. Chem. 228777–784 (1957).Google Scholar
  29. 29.
    E. Ginoulhiac, L.T. Tenconi and U. Bonomi, Attività enzimatiche della linea triptofano-acido nicotinico net diabete da pancreasectomia del rattoActa Vitamin.(Milano)18205–216 (1964).Google Scholar
  30. 30.
    A. De Antoni, C. Costa, G. Allegri, F. Baccichetti, S. Vanzan, Effect of psoralen-induced photodermatitis on tryptophan metabolism in ratsChem. Biol. Interactions 3411–18 (1981).CrossRefGoogle Scholar
  31. 31.
    G. Allegri, C. Costa, A. De Antoni, F. Baccichetti, S. Vanzan, F.F. Rubaltelli, Effect of exposure to light on enzyme activities and tryptophan metabolites of the kynurenine pathway in Wistar, in heterozygous and homozygous adult and newborn Gunn ratsPhotochem Photobiol. 35691–696 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Costa, A. De Antoni, F. Baccichetti, S. Vanzan, M. Appodia, G. Allegri, Strain differences in the tryptophan metabolite excretion and enzyme activities along the kynurenine pathway in ratsIt. J Biochem.31,412–418 (1982).Google Scholar
  33. 33.
    S. Fujigaki, K. Saito, H. Fujii, H. Wada, M. Seishima, Quantification of anthranilic acid and its related enzyme activity in several different species, in:Tryptophan Serotonin and Melatonin:Basic aspects and applicationedited by G. Huether et al. (Kluwer Academic/Plenum Publishers, New York, 1999), pp. 625–628.Google Scholar
  34. 34.
    G. Allegri, C. Costa, A. De Antoni, F. Baccichetti, S. Vanzan, Effect of psoralen-induced photodermatitis on tryptophan metabolism in guinea pigsII Farmaco Ed. Sci. 36557–564 (1981).Google Scholar
  35. 35.
    A. A-B. Badawy and M. Evans, Guinea-pig liver tryptophan pyrrolase. Absence of detectable apoenzyme activity and of hormonal induction by cortisol and possible regulation by tryptophanBiochem. J. 138445–451 (1974).PubMedGoogle Scholar
  36. 36.
    J. Hvitfelt and R.S. Santi, Tryptophan pyrrolase in the liver of guinea pig: The absence of hydrocortisone inductionBiochim. Biophys. Acta 258358–365 (1972).CrossRefGoogle Scholar
  37. 37.
    J.N. Brown and C.L. Dodgen, Fish liver tryptophan pyrrolase: The apparent absence of both hormonal and substrate inductionBiochim. Biophys. Acta 165463–469 (1968).CrossRefGoogle Scholar
  38. 38.
    R.J. Johnson and L.A. Dyer, Effect of orally administered tryptophan on tryptophan pyrrolase activity in ovine and bovineLife Sci. 51121–1124 (1966).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Spiegel, Tryptophan pyrrolase activity in the liver of adult rana pipiensBiol. Bull. 121547–553 (1961).CrossRefGoogle Scholar
  40. 40.
    K.L. Baughman and J.M. Franz, Control of tryptophan oxygenase and formamidase activity in the gerbilInt. J. Biochem. 2201–211 (1971).CrossRefGoogle Scholar
  41. 41.
    S. Yamamoto, and O. Hayaishi, Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan cleaving enzyme or enzymesJ. Biol. Chem. 2425260–5266 (1967).PubMedGoogle Scholar
  42. 42.
    F. Hirata and O. Hayaishi, New degradative routes of 5-hydroxytryptophan and serotonin by intestinal tryptophan 2,3-dioxygenaseBiochem. Biophys. Res. Comm.47,112–1 119 (1972).Google Scholar
  43. 43.
    O. Hayaishi, F. Hirata, M. Fujiwara, T. Ohnishi, and T. Nukiwa, Catalytic properties and reaction mechanism of indoleamine 2,3-dioxygenaseFERS Proc. Meet. 40131–144 (1975).Google Scholar
  44. 44.
    F. Hirata and O. Hayaishi, Possible participation of superoxide anion in the intestinal tryptophan 2,3dioxygenase reactionJ. Biot. Chem. 2467825–7826 (1971).Google Scholar
  45. 45.
    F. Hirata and O. Hayaishi, Studies on indoleamine 2,3-dioxygenase. I Superoxide anion as substrate.J. Biol. Chem. 2505960–5966 (1975).PubMedGoogle Scholar
  46. 46.
    T. Taniguchi, F. Hirata, and O. Hayaishi, Intracellular utilization of superoxide anion by indoleamine 2,3dioxygenase of rabbit enterocytesJ. Biol. Chem. 2522774–2776 (1977).PubMedGoogle Scholar
  47. 47.
    O. Hayaishi, F. Hirata, T. Ohnishi, J.P. Henry, I. Rosenthal, and A. Katoh, lndoleamine 2,3-dioxygenase. Incorporation of ’802 and ’802 into the reaction productsJ. Biol. Chem. 2523548–3550 (1977).PubMedGoogle Scholar
  48. 48.
    T. Shimizu, S. Nomiyama, F. Hirata and O. Hayaishi, Indoleamine 2,3-dioxygenase. Purification and sonie propertiesJ. Biol. Chem. 2534700–4706 (1978).PubMedGoogle Scholar
  49. 49.
    R.R. Brown, Y. Ozaki, S.P. Datta, E.C. Borden, P.M. Sondel, D.G. Malone, Implications of interferon-induced tryptophan catabolism in cancer, autoimmune diseases and AIDS, in:Kynurenine and Serotonin Pathwaysedited by R. Schwarcz et al. (Plenum Press, New York, 1991), pp. 425–435.CrossRefGoogle Scholar
  50. 50.
    M.F. Taylor, G. Feng, Relationship between interferon-y, indoleamine 2,3-dioxygenase, and tryptophan catabolismFASEB J. 52516–2522 (1991).PubMedGoogle Scholar
  51. 51.
    F.T. De Castro, J.M. Price, and R.R. Brown, Reduced triphosphopyridine-nucleotide requirement for the enzymatic formation of 3-hydroxykynurenine from L-kynurenineJ. Am. Chem. Soc. 782904–2905 (1956).CrossRefGoogle Scholar
  52. 52.
    Y. Saito, O. Hayaishi, and S. Rothberg, Studies on oxygenases. Enzymatic formation of 3-hydroxy-Lkynurenine from L-kynurenineJ. Biol. Chem. 229921–934 (1957).PubMedGoogle Scholar
  53. 53.
    H. Okamoto and O. Hayaishi, Solubilization and partial purification of kynurenine hydroxylase from mitochondrial outer membrane and its electron donorsArch. Biochem. Biophys. 131603–608 (1969).PubMedCrossRefGoogle Scholar
  54. 54.
    Y. Nisimoto, F. Takeuchi, Y. Shibata, Isolation of L-kynurenine 3-hydroxylase from the mitochondria) outer membrane of rat liverJ. Biochem. 78573–581 (1975).PubMedGoogle Scholar
  55. 55.
    Y. Kotake and Y.M. Nakayama, Über die Anthraniísäurebildung aus Kynurenin durch OrgansaftHoppeSaylers Z. Physiol. Chem. 27076–83 (1941).Google Scholar
  56. 56.
    A.E. Braunstein, E.V. Goryochenkova, T.S. Paskhinaja, Enzymatic formation of alanine from L-kynurenine and L-tryptophan, the role of vitamin B6 in this processBiokhimya 14163–179 (1949).Google Scholar
  57. 57.
    O. Wiss, and H. Fuchs, Über den Abbau von Kynurenin, Oxykynurenin und verwandten Substanzen durch RattenleberenzymExperientia(Basel)6472–473 (1950).CrossRefGoogle Scholar
  58. 58.
    G. Allegri, C.A. Benassi, E. Bocci, A. De Nadai, and B. Perissinotto, Tryptophan-pyrrolase, kynureninase and kynurenine transaminase activities of human renal tumorsBrit. J. Cancer 19754–760 (1965).PubMedCrossRefGoogle Scholar
  59. 59.
    O. Wiss, Untersuchungen über das L-kynurenin-spaltende enzym “kynureninase”Heiv. Chico. Acta32, 1694–1698 (1949).CrossRefGoogle Scholar
  60. 60.
    E. McCoy and S. Chung, Studies of 3-OH kynureninase activity in liver homogenatesFed. Proc.21, 7 (1962).Google Scholar
  61. 61.
    A. De Antoni, C. Costa, F. Baccichetti, E.L. Cardin de Stefani, S. Vanzan, G. Allegri, Enzyme activities and metabolites along the kynurenine pathway in mice with Harding-Passey melanomaActa Vitaminol Enzymol. 583–87 (1983).Google Scholar
  62. 62.
    C. Costa, A. De Antoni, F. Baccichetti, M. Biasiolo, G. Allegri, Metabolites and enzyme activities involved in tryptophan metabolism in two different strains of mouseIt. J. Biochem. 33319–324 (1984).Google Scholar
  63. 63.
    A. Saran, Properties and partial purification of kynureninaseBiochem J. 70182–188 (1958).Google Scholar
  64. 64.
    M. Mason, Further characterization of the kynurenine transaminase of rat kidneyFed. Proc. 15310 (1956).Google Scholar
  65. 65.
    O. Wiss, Der enzymatische Abbau des Kynurenins in tierischen OrganismusHoppe-Seyler’s Z. Physiol. Chem. 293106–121 (1953).CrossRefGoogle Scholar
  66. 66.
    M. Mason, The kynurenine transaminase of rat kidneyJ. Biol. Chem. 211839–844 (1954).PubMedGoogle Scholar
  67. 67.
    C.O. Stevens and L.M. Henderson, Beef liver 3-hydroxyanthranilic acid oxidaseJ. Biol. Chem. 2341188–1190 (1959).PubMedGoogle Scholar
  68. 68.
    A.H. Mehler, Formation of picolinic and quinolinic acids following enzymatic oxidation of 3hydroxyanthranilic acidJ.Biol.Chem. 218241–254 (1956).PubMedGoogle Scholar
  69. 69.
    A.H. Bokman, B.S. Schweigert, 3-Hydroxyanthranilic acid metabolism IV. Spectrophotometric evidence for the formation of an intermediateArch. Biochem. 33270–273 (1951).PubMedCrossRefGoogle Scholar
  70. 70.
    O. Wiss, Die oxidative Spaltung der 3-OxyanthanilsäureZ. Naturforsch. 9B740–741 (1954).Google Scholar
  71. 71.
    A.H. Mehler, E.L. May, studies with carboxyl-labelled 3-hydroxyanthranilic and picolinic acid in vivo and in vitroJ. Biol. Chem. 223449–455 (1956).PubMedGoogle Scholar
  72. 72.
    A. Ichiyama, S. Nakamura, H. Kawai, T. Honjo, Y. Nishizuka, O. Hayaishi, S. Senoh, Studies on the metabolism of the benzene ring of tryptophan in mammalian tissuesII.Enzymatic formation of aaminomuconic acid from 3-hydroxyanthranilic acidJ. Biol. Chem. 240740–749 (1965).PubMedGoogle Scholar
  73. 73.
    M.R. Mawal and D.R. Deshmukh, a-Aminoadipate aminotransferase and kynurenine aminotransferase activities from rat kidney. Evidence for separate identityJ. Biol. Chem. 2662573–2575 (1991).PubMedGoogle Scholar
  74. 74.
    A. Bertazzo, E. Ragazzi, M. Biasiolo, C.V.L. Costa, G. Allegri, Enzyme activities involved in tryptophan metabolism along the kynurenine pathway in rabbitsBiochim. Biophys. Acta 1527I67–175 (2001).CrossRefGoogle Scholar
  75. 75.
    W.A. Koontz, R. Shiman, Beef kidney 3-hydroxyanthranilic acid oxygenase. Purification, characterization, and analysis of the assayJ. Biol. Chem. 251368–377 (1976).PubMedGoogle Scholar
  76. 76.
    C. Beauchamp, I. Fridovich, Superoxide dismutase: Improved assays and an assay applicable to acrylamide gelsAnal. Biochem. 44276–287 (1971).PubMedCrossRefGoogle Scholar
  77. 77.
    O.H. Lowry, N.J. Rosebrough, A.L. Farr, and R.J. Randall, Protein measurement with the Folin phenol reagentJ. Biol. Chem. 193265–275 (1951).PubMedGoogle Scholar
  78. 78.
    W.D. Denckla and H.H. Dewey, The determination of tryptophan in plasma, liver, and urine, JLab. Clin. Med. 69160–169 (1967).PubMedGoogle Scholar
  79. 79.
    W.E. Knox, Two mechanism which increase in vivo the liver tryptophan peroxidase activity: Specific enzyme adaptation and stimulation of the pituitary-adrenal systemBr. J. Exp. Pathol. 32462–469 (1951).PubMedGoogle Scholar
  80. 80.
    O. Greengard, P. Feigelson, The activation and induction of rat liver tryptophan pyrrolase in vivo by its substrate, JBiol. Chem. 236158–161 (1961).PubMedGoogle Scholar
  81. 81.
    R. Yoshida, Y. Urade, M. Tokuda, and O. Hayaishi, Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infectionProc. Natl. Acad. Sci. USA 764084–4086 (1979).PubMedCrossRefGoogle Scholar
  82. 82.
    R. Yoshida, and O. Hayaishi, Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharideProc. Natl. Acad. Sci. USA 753998–4000 (1978).PubMedCrossRefGoogle Scholar
  83. 83.
    Y. Urade, R. Yoshida, H. Kitamura, and O. Hayaishi, Induction of indoleamine 2,3-dioxygenase in alveolar interstitial cells of mouse lung by bacterial IipopolysaccharideJ. Biol. Chem. 2586621–6627 (1983).PubMedGoogle Scholar
  84. 84.
    O. Takikawa, R. Yoshida, R. Kido, and O. Hayaishi, Tryptophan degradation ill mice initiated by indoleamine-2,3-dioxygenaseJ. Biol. Chem. 2613648–3653 (1986).PubMedGoogle Scholar
  85. 85.
    J.S. Cook, C.I. Pogson and S.A. Smith, Indoleamine 2,3-dioxygenase: A new rapid, sensitive radiometric assay and its application to the study of the enzyme in rat tissuesBiochem. J. 189461–466 (1980).PubMedGoogle Scholar
  86. 86.
    P.T. Daley-Yates, A.P. Powell, L.L. Smith, Pulmonary indoleamine 2,3-dioxygenase activity and its significance in the response of rats, mice, and rabbits to oxidative stressToxicol. Appl. Pharnmcol. 96222–232 (1988).CrossRefGoogle Scholar
  87. 87.
    E. Okuno, R. Kido, Kynureninase and kynurenine 3-hydroxylase in mammalian tissues, in:Kynurenine and Serotonin Pathwaysedited by R. Schwartz et al. (Plenum Press, New York, 1991), pp. 167–176.CrossRefGoogle Scholar
  88. 88.
    H. Okamoto, S. Yamamoto, M. Nozaki, O. Hayaishi, On the submitochondrial localization of L-kynurenine3-hydroxytaseBiochem. Biophys. Res. Comm. 26309–314 (1967).PubMedCrossRefGoogle Scholar
  89. 89.
    A. De Antoni, C. Costa, G. Allegri, Studies on 3-hydroxykynureninase from rat liverActa Vitamin. Enzymol. 29339–343 (1975).Google Scholar
  90. 90.
    F. Takeuchi, H. Otsuka, Y. Shibata, Purification and properties of kynureninase from rat liverJ. Biochem. 88987–994 (1980).PubMedGoogle Scholar
  91. 91.
    L. Musajo, G. Allegri, A. De Antoni, C. Costa, The problem of some naturally occurring substances and their correlated compounds interfering with Bs-dependent enzyme activities involved in tryptophan degradation. Xanthurenic acid accumulation in Bs-deficiencyActa Vitamin. Enzymol.(Milano) 29, 318–325 (1975).Google Scholar
  92. 92.
    A. De Antoni, C. costa, G. Allegri, Studies on the kynurenine aminotransferase activity in rat liver and kidneyHoppe-Seyler’s Z. Physiol. Chem. 3571707–1712 (1976).PubMedCrossRefGoogle Scholar
  93. 93.
    M.C. Tobes, M. Mason, Alfa-aminoadipate aminotransferase and kynurenine aminotransferase. Purification, characterization and further evidence for identity, J.Biol. Chem.252, 4591–4599 (1977).PubMedGoogle Scholar
  94. 94.
    M. Mason, B. Manning, Effects of steroid conjugates on availability of pyridoxal phosphate for kynureninase and kynurenine aminotransferase activity.Am. J. Clin. Mar. 24786–791 (1971).Google Scholar
  95. 95.
    H. Okamoto, O. Hayaishi, Intramitochondrial localization of kynurenine aminotransferaseJ. Biol. Chem. 2453603–3605 (1970).PubMedGoogle Scholar
  96. 96.
    N. Ogasawara, Y. Hagino, Y. Kotake, Kynurenine-transaminase, kynureninase and the increase in xanthurenic acid excretionJ. Biochem.(Tokyo)52162–166 (1962).Google Scholar
  97. 97.
    T. Noguki, M. Nakatani, M. Minatogawa, Y. Morimoto, R. Kido, Subcellular distribution and properties of kynurenine pyruvate transaminase in rat kidneyHoppe Seyler’s Z. Physiol. Chem. 3561245–1250 (1975).CrossRefGoogle Scholar
  98. 98.
    Y. Hagino, T. Yatsuhashi, N. Ogasawara, Y. Kotake, The activities of some enzymes of tryptophan metabolism in fetal, neonatal and adult at liver and kidney I. Kynureninase and kynurenine aminotransferaseNagoya J. Med. Sci.27, 218–222 (1965).PubMedGoogle Scholar
  99. 99.
    N. Nakatani, M. Morimoto, T. Noguchi, R. Kido, Subcellular distribution and properties of kynurenine transaminase in rat liverBiochem. J. 143303–310 (1974).PubMedGoogle Scholar
  100. 100.
    C.V.L. Costa, E. Ragazzi, L. Caparrotta, A. Bertazzo, M, Biasiolo, G. Allegri, Liver and kidney kynurenine aminotransferase activity in different strain of ratsAdv. Exp. Med. Biol. 467629–635 (1999).PubMedCrossRefGoogle Scholar
  101. 101.
    E. Okuno, C. Köhler, R. Schwarcz, Rat 3-hydroxyanthranilic acid oxygenase: Purification from the liver and immunocytochemical localization in brain, J.Neurochem. 49771–780 (1987).PubMedCrossRefGoogle Scholar
  102. 102.
    P. Malerbe, C. Köhler, M. Da Prada, G. Lang. V. Kiefer, R. Schwarcz, H.-W. Lahm, A.M. Cesura, Molecular cloning and functional expression of human 3-hydroxyanthranilic acid dioxygenaseJ. Biol. Chem. 26913792–13797 (1994).Google Scholar
  103. 103.
    R.E. Priest, A.H. Bokman, B.S. Schweigert, 3-Hydroxyanthranilic acid metabolism V. Distribution of enzyme system in animal tissuesProc. Soc. Exp. Biol. Med. 78477–479 (1951).PubMedGoogle Scholar
  104. 104.
    R.K. Gholson, L.V. Hankes, L.M. Henderson, 3-Hydroxyanthranilic acid as an intermediate in the oxidation of the indole.nucleus of tryptophanJ. Biol. Chem. 235132–135 (1960).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Graziella Allegri
    • 1
  • Eugenio Ragazzi
    • 2
  • Antonella Bertazzo
    • 1
  • Carlo V. L. Costa
    • 1
  • Raniero Rocchi
    • 3
  1. 1.Department of Pharmaceutical SciencesUniversity of PadovaPadovaItaly)
  2. 2.Department of Pharmacology and AnaesthesiologyUniversity of PadovaPadovaItaly
  3. 3.Department of Organic ChemistryUniversity of PadovaPadovaItaly

Personalised recommendations