Role Of Brain Tryptophan And Serotonin In Secondary Anorexia

  • Filippo Rossi-Fanelli
  • Alessandro Laviano
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 527)

Abstract

Anorexia and reduced energy intake contribute to worsen the prognosis of’ patients suffering from a number of chronic diseases, by promoting skeletal muscle wasting, leading to the development of malnutrition and eventually cachexia. The pathogenesis of cancer anorexia is still matter of debate. Many possible mediators, including hormones, peptides, and neurotransmitters, appear to be involved. However, consistent animal and clinical data suggest that brain tryptophan and serotonin may represent a common final pathway shared by many contributing factors. Supporting this hypothesis, recent data showed that the manipulation of brain tryptophan availability ameliorates anorexia and food intake in cancer patients

Keywords

Placebo Dopamine Adenocarcinoma Serotonin Oncol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Rossi Fanelli, M. Muscaritoli, C. Cangiano, A. Cascino, A. Laviano, A. Fava, The basis for a rational nutritional approach to patients with cancer. In: “Molecular Biology of Hematopoiesis 6”; edited by N.G. Abraham, A. Tabilio, M. Martelli, S. Asano, A. Donfrancesco (Kluwer Academic/Plenum Publishers, New York, 1999), pp. 229–234.CrossRefGoogle Scholar
  2. 2.
    M. Maltoni, O. Nanni, M. Pirovano, E. Scarpi, M. Indelli, C. Martini, M. Monti, E. Arnoldi, et al., Successful validation of the palliative prognostic score in terminally ill cancer patients. Italian Multicenter Study Group on Palliative Care, J. Pain Symptom Manage 17, 240–7 (1999)PubMedCrossRefGoogle Scholar
  3. 3.
    W.D. DeWys, C. Begg, P.T. Lavin, P.R. Band, J.M. Bennett, J.R. Bertino, M.H. Cohen, H.O. Douglass Jr, et al., Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology GroupAm. J. Med.69, 491–7 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    F. Rossi Fanelli, C. Cangiano, F. Ceci, R. Cellerino, Franchi F, Menichetti ET, Muscaritoli M, Cascino A. Plasma tryptophan and anorexia in human cancer. EurJ Cancer Clin Oncol 22:89–95, 1986CrossRefGoogle Scholar
  5. 5.
    M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin, Central nervous system control of food intake, Nature 404, 661–71 (2000).PubMedGoogle Scholar
  6. 6.
    J.E. Janik, B.D. Curti, R.V. Considine, H.C. Rager, G.C. Powers, W.G. Alvord, J.W. Smith 2“1, B.L. Gause, W.C. Kopp, Interleukin-1 alpha increases serum leptin concentrations in humansJ. Clin. Endocrinol. Metab.82, 3084–3086 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    W.T. Chance, S. Sheriff, J. Moore, F. Peng, A. Balasubramaniam, Reciprocal changes in hypothalamic receptor binding and circulating leptin in anorectic tumor-bearing ratsBrain Res.803, 27–33 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    J.P. Simons, A.M. Schols, L.A. Camptield, E.F. Wouters, W.H. Saris, Plasma concentration of total leptin and human lung-cancer-associated cachexia, Clin. Sci. 93, 273–7 (1997).Google Scholar
  9. 9.
    G. Mantovani, A. Maccio, L. Mura, E. Massa, M.C. Mudu, C. Mulas, M.R. Lusso, C. Madeddu, et al., Serum levels of leptin and prointlammatory cytokines in patients with advanced-stage cancer at different sites, J. Mol. Med. 78, 554–61 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    A, Kahler, M. Zimmermann, W. Langhans, Suppression of hepatic fatty acid oxidation and food intake in menNutrition15, 819–28 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    T.M. Loftus, D.E. Jaworsky, G.L. Frehywot, C.A. Townsend, G.V. Ronnett, M.D. Lane, F.P. Kuhajda, Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors, Science 288, 2379–2381 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    W.T. Chance, A. Balasubramaniam,,I.E. Fischer, Neuropeptide Y and the development of cancer anorexia. Ann. Surg. 221, 579–587 (1995)Google Scholar
  13. 13.
    W.T. Chance, S. Sheriff, J.W. Kasckow, A. Regmi, A. Balasubramaniam, NPY messenger RNA is increased in medial hypothalamus of anorectic tumor-beaing rats, Regul. Pept. 75–76, 75–76 (1998).Google Scholar
  14. 14.
    C.R. Plata-Salaman, S.E. Ilyin, D. Gayle, Brain cytokine mRNAs in anorectic rats bearing prostate adenocarcinoma tumor cellsAm. J. Physiol.275, R566–73 (1998).PubMedGoogle Scholar
  15. 15.
    A. Laviano, M.M. Meguid, Z-J. Yang, J.R. Gleason, C. Cangiano, F. Rossi Fanelli, Cracking the riddle of cancer anorexiaNutrition12, 706–710 (1996).PubMedGoogle Scholar
  16. 16.
    Plata-Salaman, Anorexia during acute and chronic diseaseNutrition12, 69–78 (1996).CrossRefGoogle Scholar
  17. 17.
    E.I. Opara, A. Laviano, M.M. Meguid, Z-J. Yang, Correlation between food intake and CSF IL-la in anorectic tumor bearing ratsNeuroReport6, 750–752 (1995).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Laviano, J.R. Gleason, M.M. Meguid, Z-J. Yang, C. Cangiano, F. Rossi Fanelli, Effects of intra-VMN mianserin and IL-Ira on meal number in anorectic tumor-bearing ratsJ. Investig. Med.48, 40–48 (2000).PubMedGoogle Scholar
  19. 19.
    A. /nui, Cancer anorexia-cachexia syndrome: are neuropeptides the key?Cancer Res.59, 4493–4501 (1999).Google Scholar
  20. 20.
    F. Shintani, S. Kanba, T. Nakaki, M. Nibuya, N. Kinoshita, E. Suzuki, G. Yagi, R. Kato, et al., Interleukinlbeta augments release of norepinephrine, dopamine and serotonin in the rat anterior hypothalamusJ. Neurosci.13, 3574–3581 (1993).PubMedGoogle Scholar
  21. 21.
    S.A. Bartholomew, S.A. Hoffman, Effects of peripheral cytokine injections on multiple unit activity in the anterior hypothalamic area of the mouse, Brain Behay. Immun. 7, 301–316 (1993).Google Scholar
  22. 22.
    C.R. Plata-Salaman, J.M. Ffrench-Mullen, Interleukin-/beta depresses calcium currents in CAI hippocampal neurons at pathophysiological concentrationsBrain Res. Bull.29, 221–223 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Laviano, F. Rossi Fanelli, M.M. Meguid, The brain’s normal functionScience280, 503 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    F. Rossi Fanelli, C. Cangiano, Increased availability of tryptophan in brain as common pathogenic mechanism for anorexia associated with different diseasesNutrition7, 364–367 (1991).PubMedGoogle Scholar
  25. 25.
    M. Muscaritoli, M.M. Meguid, J.L. Beverly, Z.J. Yang, C. Cangiano, F. Rossi Fanelli, Mechanism of early tumor anorexiaJ. Surg. Res.60, 389–397 (1996).PubMedCrossRefGoogle Scholar
  26. 26.
    V. Blaha, Z.J. Yang, M.M. Meguid, J.K. Chai, A. Oler, Z. Zadak, Ventromedial nucleus of hypothalamus is related to the development of cancer-induced anorexia: in vivo microdialysis studyActa Medica (Hradec Kralove)10, 3–11 (1998).Google Scholar
  27. 27.
    C. Cangiano, U. Testa, M. Muscaritoli, M.M. Meguid, M. Mulieri, A. Laviano, A. Cascino, I. Preziosa, et al., Cytokines, tryptophan and anorexia in cancer patients before and after surgical tumor ablationAnticancer Res.14, 1451–1455 (1994).PubMedGoogle Scholar
  28. 28.
    W.T. Chance, M. von Meyenfeldt,.I.E. Fischer, Serotonin depletion by 5,7-dihydroxytryptamine or parachloroamphetamine does not affect cancer anorexiaPharmacol. Biochem. Behay.18, 115–21 (1983).CrossRefGoogle Scholar
  29. 29.
    A. Laviano, C. Cangiano, F. Rossi Fanelli, Pathogenesis of cancer anorexia: personal perspective.Nutrition3, 56–57, (1997).CrossRefGoogle Scholar
  30. 30.
    A.H. Swiergiel, A.J. Dunn, Lack of evidence for a role of serotonin in interleukin-l-induced hypophagia.Pharmacol. Biochem. Behar.65, 531–537 (2000).CrossRefGoogle Scholar
  31. 31.
    J.D. Schaechter, R.J. Wurtman, Tryptophan availability modulates release from rat hypothalamic slicesJ. Neurochem.53, I 925–1933 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    J.D. Schaechter, R.J. Wurtman, Serotonin release varies with brain tryptophan levelsBrain Res.532, 203–210(1990)PubMedCrossRefGoogle Scholar
  33. 33.
    A.J. Dunn, J. Welch, Stress-and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activityJ. Neurochem.57, 1615–22 (1991).PubMedCrossRefGoogle Scholar
  34. 34.
    A.J. Dunn, Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1J. Pharmacol. Exp. Therap.261, 964–969 (1992).Google Scholar
  35. 35.
    Y. Takao, Y. Kamisaki, T., Itoh Beta-adrenergic regulation of amine precursor amino acid transport across the blood brain barrierEur. J. Pharmacol.215, 245–251 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    C. Cangiano, A. Laviano, M.M. Meguid, M. Mulieri, L. Conversano, I. Preziosa, F. Rossi Fanelli, Effects of administration of oral branched-chain amino acids on anorexia and caloric intake in cancer patientsJ. Natl. Cancer but.88, 550–552 (1996).CrossRefGoogle Scholar
  37. 37.
    K.M. Gil, B. Skeie, V. Kvetan, M.I. Friedman, J. Askanazi, Parenteral nutrition and oral intake: effect of branched-chain amino acidsNutrition6, 291–295 (1990).PubMedGoogle Scholar
  38. 39.
    S. Bursztein-De Myttenaere, K.M. Gil, S.B. Heymsfield, P. Furst, J. Askanazi, N. D’Attellis, D.H. Elwyn, Gastric emptying in humans: influence of different regimens of parenteral nutritionAm. J. Clin. Nutr.60, 244–248 (1994).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Filippo Rossi-Fanelli
    • 1
  • Alessandro Laviano
    • 1
  1. 1.Department of Clinical MedicineUniversity “La Sapienza”RomeITALY

Personalised recommendations