Application of FT-NIR Spectroscopy for Monitoring the Kinetics of Living Polymerizations

  • M. G. Lanzendörfer
  • H. Schmalz
  • V. Abetz
  • A. H. E. Müller


Fourier-transform near infrared (FT-NIR) spectroscopy in combination with a fiber optic probe was successfully used to monitor the living cationic polymerization of isobutylene (IB) and the living anionic polymerization of ethylene oxide (EO) and butadiene (B). After the development of online monitoring techniques for the living anionic polymerizations of styrene (S) and isoprene in the near infrared range (NIR), methods were developed that allow to follow the polymerization of IB and S in the mid-infrared (MIR) range. It was believed that NIR could not be used for IB due to overlapping signals. In this paper we show that even in the NIR specific signals of the monomer can be used for monitoring conversion without using deconvolution methods in IB as well as EO and B polymerizations. In the case of EO a temperature dependent induction period was found with sec-butyllithium and the phosphazene base t-BuP4 as initiating system.

FT-NIR kinetics living polymerization isobutylene ethylene oxide butadiene anionic polymerization cationic polymerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. E. Long, H. Y. Liu, B. A. Schell, D. M. Teegarden and D. S. Uerz, Determination of Solution Polymerization Kinetics by Near-infrared Spectroscopy. 1. Living Anionic Polymerization Processes, Macromolecules 26:6237 (1993)..CrossRefGoogle Scholar
  2. 2.
    A. Fieberg, D. Broska, C. Heibel and F. Bandermann, Metal-free anionic polymerization of methyl methacrylate, Des. Monomers Polym. 1:285 (1998).CrossRefGoogle Scholar
  3. 3.
    J. E. Puskas, M. G. Lanzendoerfer and W. E. Pattern, Mid-IR real-time monitoring of the carbocationic polymerization of isobutylene and styrene, Polym. Bull. 40:55 (1998).CrossRefGoogle Scholar
  4. 4.
    R. F. Storey, A. B. Donnalley and T. L. Maggio, Real-Time Monitoring of Carbocationic Polymerization of Isobutylene Using in Situ FTIR-ATR Spectroscopy with Conduit and Diamond-Composite Sensor Technology, Macromolecules 31:1523 (1998).CrossRefGoogle Scholar
  5. 5.
    R. F. Storey, T. L. Maggio and L. B. Brister, Synthesis of poly(styrene-b-isobutylene-b-styrene) block copolymers using real-time in situ ATR-FTIR monitoring, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.) 40:964 (1999).Google Scholar
  6. 6.
    B. Esswein, A. Molenberg and M. Moeller, Use of polyiminophosphazene bases for ring-opening polymerizations, Macromol. Symp. 107:331 (1996).CrossRefGoogle Scholar
  7. 7.
    B. Esswein and M. Moeller, Polymerization of ethylene oxide with alkyllithium compounds and the phosphazene base \“tBu-P4\” Angew. Chem., Int. Ed. Engl. 35:623 (1996).CrossRefGoogle Scholar
  8. 8.
    B. Esswein, N. M. Steidl and M. Moeller, Anionic polymerization of oxirane in the presence of the polyiminophosphazene base tert-Bu-P4, Macromol. Rapid Commun. 17:143(1996).CrossRefGoogle Scholar
  9. 9.
    J. W. Linnett, Infrared and Raman spectra of polyatomic molecules. V. Cyclopropane and ethylene oxide, J. Chem. Phys. 6:692 (1938).CrossRefGoogle Scholar
  10. 10.
    L. G. Bonner, Vibration spectra and molecular structure. III. The infrared absorption spectra of cyclopropane and ethylene oxide, J. Chem. Phys. 5:704 (1937).CrossRefGoogle Scholar
  11. 11.
    M. Lanzendörfer, H. Schmalz, V. Abetz and A. H. E. Müller, Application of FT-NIR spectroscopy for monitoring the kinetics of living polymerizations, Polym. Prepr. (Am.Chem. Soc, Div. Polym. Chem.) 42:329 (2001).Google Scholar
  12. 12.
    S. Förster and E. Krämer, Synthesis of Pb-PEO and PI-PEO Block Copolymers with Alkyllithium Initiators and the Phosphazene Base t-BuP4, Macromolecules 32:2783 (1999).CrossRefGoogle Scholar
  13. 13.
    G. Floudas, B. Vazaiou, F. Schipper, R. Ulrich, U. Wiesner, H. Iatrou and N. Hadjichristidis, Poly(ethylene oxide-b-isoprene) Diblock Copolymer Phase Diagram, Macromolecules 34:2947 (2001).CrossRefGoogle Scholar
  14. 14.
    L. Zhu, S. Z. D. Cheng, B. H. Calhoun, Q. Ge, R. P. Quirk, E. L. Thomas, B. S. Hsiao, F. Yeh and B. Lotz, Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer, Polymer 42:5829 (2001).CrossRefGoogle Scholar
  15. 15.
    K. S. Kazanskii, A. A. Solovyanov and S. G. Entelis, Polymerization of ethylene oxide by alkali metal-naphthalene complexes in tetrahydrofuran, Eur. Polym. J. 7:1421 (1971).CrossRefGoogle Scholar
  16. 16.
    H. Schmalz, A. Böker, R. Lange and V. Abetz, ABC triblock copolymers with crystalline end blocks and their use as thermoplastic elastomers, Polym. Mater. Sci. Eng. 85:478(2001).Google Scholar
  17. 17.
    C. Schilli, M. Lanzendörfer and A. H. E. Müller, Benzyl and Cumyl Dithiocarbamates as Chain Transfer Agents in the RAFT Polymerization of N-lsopropylacrylamide. In-Situ FT-NIR and MALDI-TOF MS Investigation, Macromolecules (submitted).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • M. G. Lanzendörfer
    • 1
  • H. Schmalz
    • 1
  • V. Abetz
    • 1
  • A. H. E. Müller
    • 1
  1. 1.Makromolekulare Chemie IIUniversität BayreuthBayreuthGermany

Personalised recommendations